
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 06 | June-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 355

Enhancing Security Audit for Web Applications with Dynamic Modeling

Approach

Mr. Vishal Vijaykumar Parkar
1
, Mr. H. A. Tirmare

2

1
 Student, Computer Science & Technology, Department of Technology

Shivaji University, Kolhapur, Maharashtra, India
2
 Assistant Professor, Computer Science & Technology, Department of Technology

Shivaji University, Kolhapur, Maharashtra, India

--***---
Abstract – The use of the Internet is dramatically

increasing in business day by day. The user-friendly user

interfaces offered by web applications also provide a many

possibilities of attacks to crackers. Thus, web applications

have become a crucial candidate for security analysis.

Tools currently used for analysis of security of languages

used for development of web applications such as PHP,

suffer from a relatively high false-positive rate and low true

positive rate; which is due to incorrect modeling of dynamic

features of such languages and lack of path-sensitivity in the

tools. In this project, we compare one of these tools with its

version modified to have the dynamic modeling ability. We

show how the modified tool handles some of the situations

better than the original tool and illustrate it with examples.

Keywords: web-application security; static and dynamic

security-assessment

1. INTRODUCTION

Today, a large number of web applications have been

deployed to implement various business functions and the the

number is growing rapidly. As the businesses rely more and

more on these applications, assessing their security has

therefore become really very essential and urgent.

Typically, web applications offer a user interface which is

inherently made easy to understand and use and is additionally

available and operational ubiquitously round the clock. This

has got twofold benefit to malicious users; they can easily

understand the interface of the web applications and

accordingly plan their attack. Further, the ubiquitous nature of

the applications provides the attackers enough scope and time

to try various attacks. Programming errors pertaining to web

applications constitute a significant part of the 25 most

common programming errors e.g. cross-site request forgery,

incorrect SQL neutralization, and lack of authorization [6].

Nowadays, PHP happens to be the most popular server-

scripting language. PHP has many special features which

make it too different from other similar programming

languages, mostly due to its dynamic nature. The examples

are inclusion of a file specified by a runtime-computed

filename and the eval construct which allows runtime

generation of code which is executed afterwards. This not

only makes it hard but sometimes even impossible also to

apply the same techniques and tools for finding errors or for

assessment of correctness not in line with the case of

programming languages not related to the web.

2. RELEVANCE / MOTIVATION

Security of web applications has become an important issue

because of their increased use. Current tools for bug discovery

have a relatively high false-positive rate and low true-positive

rate.

Due to many dynamic features, common server programming

language like PHP require the static and dynamic bug

recovery methods be combined for efficient finding of bugs or

for correctness check for non-web programming languages.

2.2. Problem Statement

To develop a PHP web application for the discovery of bugs

inside web applications caused by data flow of nonsanitized

inputs from the user to sinks like SQL queries, URL building,

output, etc. in those applications. We will combine existing

static techniques used for evaluation of security of web

applications with some dynamic techniques.

3. LITERATURE REVIEW

[1] Security Analysis of PHP web Applications: presents a

new approach to finding bugs present in web applications

written in PHP. Though it is based on known techniques, it is

the first which aggregated them into a single one and

improved them to face the most critical issues. It proposes

precise alias-modeling and taint analysis which can detect

most of vulnerabilities.

[2] Finding Bugs in web Applications: Presents a technique

for tracing bugs in web applications written in PHP. The

technique is based on combined concrete and symbolic

execution. It is unique in several aspects. First, the technique

not only finds runtime errors but also uses an HTML validator

to determine scenarios where malformed HTML is created.

Second, it addresses a number of issues specific to PHP, such

as the simulation of interactive user input that occurs when

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 06 | June-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 356

user-interface elements on generated HTML pages are

activated, which results in the execution of additional PHP

scripts. Third, it does an automated analysis to minimize the

size of inputs which may induce failure. The tool created,

Apollo, implements the analysis and is tested on six PHP web

applications.

[3] Slr: Path-sensitive: This paper presents an approach for

finding paths which are semantically infeasible in programs

using abstract interpretation. It uses a series of path-

insensitive forward and backward scans of an abstract

interpreter to detect paths in the CFG that cannot be

implemented in concrete executions of the program. It then

presents a technique called syntactic language refinement

(SLR) that automatically excludes such paths from a program

in the process of static analysis. SLR allows to prove more

properties iteratively. Specifically, it simulates a path-

sensitive analyzer by performing syntactic language

refinement over an underlying path insensitive static analyzer.

Finally, it judges the impact of the technique by giving

experimental results to quantify on an abstract interpreter for

programs in C.

[4] Saner: Composing Static and Dynamic Analysis: This

presents a novel technique for analysis of the sanitization.

Actually, it combines static and dynamic analysis techniques

to identify problematic sanitization procedures that can be

escaped by an attacker. This technique is implemented in

Saner, a tool developed, and is evaluated on many real-world

applications. It can identify several novel vulnerabilities that

stem from erroneous sanitization procedures.

[5] Static analysis of dynamic scripting languages: Presents a

static analysis model for PHP that can handle dynamic

language features e.g. duck-typing, dynamic and weak typing,

simple operation overloading, run-time aliasing and implicit

object and array creation. The emphasis is on alias analysis,

but it shows how constant propagation and type inference

must be used to perform the effective analysis. It also presents

how SSA form requires the presence of a powerful analysis of

alias.

[6] Common weakness enumeration: The 2011 CWE/SANS

Top 25 Most Dangerous Software Errors gives a list of the

widespread and crucial errors that generate serious

vulnerabilities in any software. The list helps programmers to

prevent the kinds of vulnerabilities by identifying and

avoiding common mistakes that occur in software.

Researchers in software security can use this list to focus on a

precise but important subset of all known security

weaknesses. Finally, software managers and CIOs can use this

list to measure the progress in their efforts to secure their

software.

[7] Simulation of Built-in PHP Features for Precise Static

Code Analysis:

[8] Aggregating Static And Dynamic Approaches For web

Application Security Assessment: Surveys contemporary tools

having static approaches for web application security

assessment. It also gives a basic idea about how the dynamic

aspects can be combined with the static techniques to improve

the discovery of real bugs in the PHP web applications.

4. OUTLINE OF THE WORK

4.1 Scope
As a part of this project, we have enhanced a previously built

web application in PHP for security assessment of large-scale

web applications which are also written in PHP. Using this

application one can assess the vulnerabilities that may be

present in large web applications. The output indicates the

vulnerabilities present in such applications, if any. Further

manual intervention is necessary for the removal of the

vulnerabilities [8].

4.1 The Methodology

4.1.1 Methods of data collection:-
The data for the experiments are collected from large-scale

web applications (free and open source) such as HotCRP, a

CMS built by us, single web pages etc.

4.1.2 Methods of data analysis:

The main challenge for the analysis is the combination of an

random user input and the dynamic nature of PHP. To address

this, our analysis consists of the following steps:

1. Control-flow graph (CFG) construction

2. Static and dynamic analysis of constructed CFG

3. Detection of vulnerabilities

4. A context-sensitive validation of vulnerabilities

4.1.2.1 Construction of the control-flow graph (CFG)

The following steps are taken to build CFG:

1) We first build an Abstract Syntax Tree (AST) based on

PHP’s open source internals for each PHP file in the web

application to be tested. Next, relevant information like the

name and parameters of all user-defined functions are

extracted and are stored. Function’s body is saved as separate

AST and is removed from the main AST of the parsed file.

2) We start converting each main AST into a Control Flow

Graph (CFG) as follows. A new basic block is built and is

connected to the previous basic block with a block edge

whenever a node of the AST takes a conditional jump. The

jump condition is added to the block edge and the AST nodes

following the node are added to the new basic block.

3) The data flow of each basic block is simulated as soon as a

new basic block is created. The main merit is that the analysis

of a basic block is only dependent on previous basic blocks

when performing backwards-directed data flow analysis.

Next, the analysis results are combined into the so called

block summary that is generated during simulation. It

summarizes the data flow within a basic block.
4) If a call to a previously unknown user-defined function is

encountered during simulation, the CFG is built from the

function AST and a function summary is created once with

intra-procedural analysis. Then, the pre- and post-conditions

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 06 | June-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 357

for this function can be extracted from the summary and then

inter-procedural analysis is performed. At the end, the

construction of the main CFG is continued.

4.1.2.2 Static and dynamic analysis of constructed CFG

A taint analysis is then performed beginning from the

currently simulated basic block for each vulnerable parameter

of a user-defined function or configured sensitive sink.

Taint Analysis: While simulating a basic block, each function

call is checked for potential vulnerabilities. Sensitive sinks in

the PHP language have been identified which we configured

by function name, sensitive parameter, and vulnerability type.

For each sensitive sink called, a new taint analysis is done for

the corresponding vulnerability type. RIPS is aware of 20

different vulnerability types which are refined to 45 different

scopes.

Data-flow analysis: In order to find all possible values of a

sensitive sink’s argument, the argument is traced backwards

through all basic blocks which are linked to the current basic

block as entry edge.

We loop through all entry edges of the current basic block that

do not sanitize this argument and look-up its name in the

property of each block summary which gives the flow of data.

The argument is replaced with the mapped symbol if a match

is found, and all sanitization tags and encoding types are

copied. Then, the trace is continued through all entry edges

linked to the basic block. At the end, the unique sum of the

return values for each path in the CFG is returned.

Dynamic Vulnerability inspection: Through this, the

original tool is enhanced by adding new dynamic checks in

the form of some additional functions of the following types

in a new configuration file – dynamic file inclusion, dynamic

code execution and their corresponding securing functions.

This causes the code to be evaluated in dynamic way to check

for the presence of vulnerabilities incorporated in the code due

to the dynamism of these function and which could have been

found with only static approach.

4.1.2.3 Detection of vulnerabilities

At first, all possible strings which are going into the sensitive

argument are recomputed by data flow analysis directed

backwards. Next, each string is checked in a context-sensitive

way for user input. If the user input was unsanitized and the

markup context is found to be exploitable, a new vulnerability

is reported.

Table -1: Probable vulnerabilities found out by the analysis

4.1.2.4 A context-sensitive validation of vulnerabilities

The strings obtained from the data-flow analysis, which is

done while detecting the vulnerabilities, are checked for user

input tags. A different analyzer is invoked for each

vulnerability type. This analyzer identifies the context within

the markup. Based on the context, specific vulnerability tags

are determined. The taint symbols are marked as a tainted

symbol only if they are not sanitized against the current

vulnerability tag, and a vulnerability is issued.

If user input was not found, but the analyzed sensitive sink is

called within a user-defined function, the strings are checked

for parameter and global tags. When these are obtained in one

of the strings, the symbols corresponding to them are added as

vulnerable parameters or as vulnerable global variables to the

user-defined function summary. These symbols are analyzed

during inter-procedural analysis starting from the basic block

of the function call [8].

Fig – 1: Block diagram of the combined approach

5. ANALYSIS AND EVALUATION

To evaluate our combined approach, we analyze the code

snippet from real web applications like HotCRP, a CMS

developed by us, single web forms etc. using this tool. We

then compare the bugs reported by the original tool with that

of ours for the same web applications and show how the true

positive rate is more and in our approach.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 06 | June-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 358

Tested Appl. →

Dynamic Vuln. ↓

HotCRP Custom CMS Single PHP Script

Org tool Imp tool Org tool Imp tool Org tool Imp tool

File Inclusion 0 38 0 126 0 0

Code Execution 0 87 0 0 0 2

Total Found 0 125 0 126 0 2

Table -2: Comparative analysis of vulnerability detection by

both the tools

The above analysis gives clear comparative remarks on the

difference in the capabilities of the two tools – the original

tool and the improved tool.

It clearly shows that the improved tool goes ahead and detects

additional dynamic vulnerabilities such as file inclusion and

code execution from the two big PHP applications and a

single PHP script.

6. CONCLUSION

Due to the user-friendliness as well as ubiquitousness of web

applications their security has become very important. In this

project, we have tried to overcome known drawbacks of the

current tools and have implemented tool that combines the

static techniques with some dynamic ones to address these

issues. We show how our technique handles some of the

situations better where other tools either under-perform or

simply fail to work and justify our efforts with some valid

proofs of tests done on some real world web applications in

PHP.

REFERENCES

[1] Hauzar et al. On Security Analysis of PHP web

Applications. IEEE 36th International Conference, 2012.

[2] Artzi et al. Finding Bugs in web Applications Using

Dynamic Test Generation and Explicit-State Model

Checking. IEEE Trans. on Soft. Eng., 36(4), 2010.

[3] G. Balakrishnan, S. Sankaranarayanan, F. Ivancic, O.

Wei, and A. Gupta. Slr: Path-sensitive analysis

through infeasible-path detection and syntactic

language refinement. In Static Analysis, LNCS.

Springer, 2008.

[4] D. Balzarotti et al. Saner: Composing Static and

Dynamic Analysis to Validate Sanitization in web

Applications. S&P’2008, 2008.

[5] P. Biggar and D. Gregg. Static analysis of dynamic

scripting languages, 2009

[6] Common weakness enumeration.

http://cwe.mitre.org/top25/

[7] Johannes Dahse, Throsten Holz, Simulation of Built-in

PHP Features for Precise Static Code Analysis.

[8] Parkar V. V., Tirmare H. A., Aggregating Static and

Dynamic Approaches For web Application Security

Assessment, IRJET, 2015.

[9] Tirmare H. A., A Novel Technique for mapping user

queries to categories in personalized web search,

IJMTER, 2015.

BIOGRAPHIES

Mr. Vishal Vijaykumar Parkar is a

student in the master of Computer

Science and Technology program at the

Department of Technology, Shivaji

University, Kolhapur. He is interested in

domains like web security, web

programming, and databases.

Mr. H. A. Tirmare is an Assistant

Professor in the Computer Science and

Technology department, Department of

Technology, Shivaji University,

Kolhapur.

His fields of interest include but are not

limited to computer networks, web

security, operating systems, and data

structures.

http://cwe.mitre.org/top25/

