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Abstract - New data and updates are growing bigger 
and the results of data mining applications turn out to be 
stable. In this paper we use Incremental MapReduce and 
it is the extension of the map reduces. Map reduce have 
been used widely in mining. Incremental MapReduce 
process key-value pair level incremental processing. It 
process only key-value pair level incremental processing 
somewhat than task level re-computation and it also 
support sophisticated iterative techniques. In addition to 
this map reduce we have introduced the K-Nearest 
Neighbor This model allows us to bring the output again a 
large dataset. To map gases will determine the K-n 
Neighbors in different splits of the data. Incremental Map 
performs the operation once it get the data from  the K-N. 

Keywords-  Incremental MapReduce, key-value pair, k-
Nearest Neighbour, re-computation. 

1.INTRODUCTION ( Size 11 , cambria font) 
 
Today huge amount of digital data is being accumulated in 
many important areas, including e-commerce, social 
network, finance, health care, education, and environment. It 
has become increasingly popular to mine such big data in 
order to gain insights to help business decisions or to 
provide better personalized, higher quality services. In 
recent years, a large number of computing frameworks have 
been developed for big data analysis. Among these 
frameworks, MapReduce (with its open-source 
implementations, such as Hadoop) is the most widely used in 
production because of its simplicity, generality, and 
maturity. We focus on improving Map Reduce in this paper. 
Big data is constantly evolving. As new data and updates are 
being collected, the input data of a big data mining algorithm 
will gradually change, and the computed results will become 
stale and obsolete over time. In many situations, it is 
desirable to periodically refresh the mining computation in 
order to keep the mining result sup-to-date.  

 
2. Problem identification 
Today huge amount of digital data is being accumulated in 
many important areas, including e-commerce, social 
network, finance, health care, education, and environment. It 
has become increasingly popular to mine such big data in 
order to gain insights to help business decisions or to 
provide better personalized, higher quality services. In 
recent years, a large number of computing frameworks have 
been developed for big data analysis. Among these 
frameworks, MapReduce (with its open-source 

implementations, such as Hadoop) is the most widely used in 
production because of its simplicity, generality, and 
maturity. We focus on improving Map Reduce in this paper. 
Big data is constantly evolving. As new data and updates are 
being collected, the input data of a big data mining algorithm 
will gradually change, and the computed results will become 
stale and obsolete over time. In many situations, it is 
desirable to periodically refresh the mining computation in 
order to keep the mining result sup-to-date.  
 

2. Existing system 

The PageRank algorithm computes ranking scores of 
web pages based on the web graph structure for supporting 
web search. However, the web graph structure is constantly 
evolving web pages and hyper-links are created, deleted, and 
updated. As the underlying web graph evolves, the PageRank 
ranking results gradually become stale, potentially lowering 
the quality of web search. Therefore, it is desirable to refresh 
the PageRank computation regularly. Incremental 
processing is a promising approach to refreshing mining 
results. Given the size of the input big data, it is often very 
expensive to rerun the entire computation from scratch. 
Incremental processing exploits the fact that the input data 
of two subsequent computations A and B are similar. Only a 
very small fraction of the input data has changed. The idea is 
to save states in computation A, re-use A’s states in 
computation B, and perform re-computation only for states 
that are affected by the changed input data. A number of 
previous studies (including Percolator, CBP) have followed 
this principle and designed new programming models to 
support incremental processing. Unfortunately, the new 
programming models (BigTable observers in Percolator, 
stateful translate operators in CBP) are drastically different 
from MapReduce, requiring programmers to completely re-
implement their algorithms.Incoop extends MapReduce to 
support incremental processing. It has two main limitations. 
First, Incoop supports only task-level incremental 
processing. That is, it saves and reuses states at the 
granularity of individual Map and Reduce tasks. Each task 
typically processes a large number of key-value pairs (kv 
pairs). If Incoop detects any data changes in the input of a 
task, it will rerun the entire task. While this approach easily 
leverages existing MapReduce features for state savings, it 
may incur a large amount of redundant computation if only a 
small fraction of kv-pairs have changed in a task. Second, 
Incoop supports only one-step computation, while important 
mining algorithms, such as PageRank, require iterative 
computation. Incoop would treat each iteration as a separate 
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MapReduce job. However, a small number of input data 
changes may gradually propagate to affect a large portion of 
intermediate states after a number of iterations, resulting in 
expensive global re-computation after wards.The Bulk 
Synchronous Processing (BSP) model. The computation is 
broken down into a sequence of super steps. In each super 
step, a Compute function is invoked on each vertex. It 
communicates with other vertices by sending and receiving 
messages and performs computation for the current vertex. 
This model can efficiently support a large number of 
iterative graph algorithms.  It provides a group wise 
processing operator Translate that takes state as an explicit 
input to support incremental analysis. But it adopts a new 
programming model that is very different from Map Reduce. 
In addition, several research studies support incremental 
processing by task-level re-computation, but they require 
users to manipulate the states on their own. In contrast, 
Incremental MapReduce exploits a fine-grain kv-pair level 
re-computation that are more advantageous. Incremental 
processing for iterative application, Proposes a timely 
dataflow paradigm that allows stateful computation and 
arbitrary nested iterations. To support incremental iterative 
computation, programmers have to completely rewrite their 
MapReduce programs. In comparison, extend the widely 
used MapReduce model for incremental iterative 
computation. Existing MapReduce programs can be slightly 
changed to run on incremental MapReduce for incremental 
processing. 

4. Proposed System. 

Propose Incremental MapReduce, an extension to 
MapReduce that supports fine-grain incremental processing 
for both one step and iterative computation. Compared to 
previous solutions, Incremental MapReduce incorporates the 
following three novel features 

4.1 Fine-grain incremental processing using MRBG-
store 

Incremental Map Reduce supports kv-pair level fine-
grain incremental processing in order to minimize the 
amount of re-computation as much as possible. Model the 
kv-pair level data flow and data dependence in a Map Reduce 
computation as a bipartite graph, called MRB Graph. A 
MRBG-Store is designed to preserve the fine-grain states in 
the MRB Graph and support efficient queries to retrieve fine-
grain states for incremental processing. 

4.2 General-Purpose Iterative Computation 
With modest extension to MapReduce API, previous 

work proposed Incremental MapReduce to efficiently 
support iterative computation on the MapReduce platform. 
However, it targets types of iterative computation where 
there is a one-to-one/all-to-one correspondence from 
Reduce output to Map input. In comparison, our current 
proposal provides general-purpose support, including not 

only one-to-one, but also one-to-many, many-to-one, and 
many-to-many correspondence. Enhance the Map API to 
allow users to easily express loop-invariant structure data, 
and propose a Project API function to express the 
correspondence from Reduce to Map. While users need to 
slightly modify their algorithms in order to take full 
advantage of Incremental MapReduce, such modification is 
modest compared to the effort to re-implement algorithms 
on a completely different programming paradigm. 

4.3 Icremental Processing For Computation. 
 
          Incremental iterative processing is substantially more 
challenging than incremental one-step processing because 
even a small number of updates may propagate to affect a 
large portion of intermediate states after a number of 
iterations. To address this problem, propose to reuse the 
converged state from the previous computation and employ 
a change propagation control (CPC) mechanism. We also 
enhance the MRBG-Store to better support the access 
patterns in incremental iterative processing. To our 
knowledge, IncrementalMapReduce is the first MapReduce-
based solution that efficiently supports incremental iterative 
computation. 
 

5 System Architecture Diagram. 
  

 
    Fig -1: System Architecture Diagram. 
 

 
6. Module Description 
6.1 Collect data blocks Module 

Huge amount of digital data is being accumulated in 
e-commerce, social network, finance, health care, education 
environment. It has become increasingly popular to mine 
such big data in order to gain insights to help business 
decisions or to provide better personalized, higher quality 
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services. In recent years, a large number of computing 
frameworks have been developed for big data analysis. As 
new data and updates are being collected, the input data of a 
big data mining algorithm will gradually change, and the 
computed results will become stale and obsolete over time. 
Given the size of the input big data, it is often very expensive 
to rerun the entire computation from scratch. Divides a file 
into equal-sized blocks and stores the blocks across a cluster 
of machines. The MapReduce system runs a Job Tracker 
process on a master node to monitor the job progress, and a 
set of Task Tracker processes on worker nodes to perform 
the actual Map and Reduce tasks. 
 

6.2 Iterative computation Module  
Incremental iterative processing is substantially 

more challenging than incremental one-step processing 
because even a small number of updates may propagate to 
affect a large portion of intermediate states after a number of 
iterations. 

To reuse the converged state from the previous computation 
and employ a change propagation control (CPC) mechanism. 
Also enhance the MRBG-Store to better support the access 
patterns in incremental iterative processing.  Incremental 
MapReduce is the first MapReduce-based solution that 
efficiently supports incremental iterative computation 
.Including not only one-to-one, but also one-to-many, many-
to-one, and many-to-many correspondence. Enhance the 
Map API to allow users to easily express loop-invariant 
structure data, and API function to express the 
correspondence from Reduce to Map. While users need to 
slightly modify their algorithms in order to take full 
advantage of Incremental MapReduce, such modification is 
modest compared to the effort to re-implement algorithms 
on a completely different programming paradigm. 

6.2 Fine-Grain Incremental Processing Module  

Incremental MapReduce supports kv-pair level fine-
grain incremental processing in order to minimize the 
amount of re-computation as much as possible. The kv-pair 
level data flow and data dependence in a MapReduce 
computation as a bipartite graph A MRBG-Store is designed 
to preserve the fine-grain states in the MRBGraph and 
support efficient queries to retrieve fine-grain states for 
incremental processing. The Map function takes a kv-pair 
(K1; V 1) as input and computes zero or more intermediate 
kv-pairs (K2; V 2). Then all (K2; V 2) is grouped by K2. The 
Reduce function takes a K2 and a list of V 2 as input and 
computes the final output kv-pairs   (K3; 3). The fine-grain 
incremental processing engine with an example application, 
which computes the sum of in-edge weights for each vertex 
in a graph. The Map input is the adjacency matrix of the 
graph. Every record corresponds to a vertex in the graph. K1 

is vertex id i, and V 1 contains “j1:wi;j1 ; j2:wi;j2 ; ...” where j 
is a destination vertex and wi;j is the weight of the out-edge. 
Given such a record, the Map function outputs intermediate 
kv pair hj;wi;ji for every j. The shuffling phase groups the 
edge weights by the destination vertex. Then the Reduce 
function computes for a vertex j the sum of all its in-edge 
weights as Pi wi;j. 

6.3 Incremental Map reduce Re-computation 
Module 

Incremental MapReduce expects delta input data 
that contains the newly inserted, deleted, or modified kv-
pairs as the input to incremental processing. The engine 
merges the delta MRBGraph and the preserved MRBGraph to 
obtain the updated MRBGraph using the algorithm. Each 
datasets the engine deletes the corresponding saved edge 
state. For each Vertex, the engine first checks duplicates, and 
inserts the new edge if no duplicate exists, or else updates 
the old edge if duplicate exists uniquely identifies an 
MRBGraph edge. Since an update in the Map input is 
represented as a deletion and an insertion, any modification 
to the intermediate edge state consists of a deletion followed 
by an insertion. For each affected K2, the merged list of V 2 
will be used as input to invoke the Reduce function to 
generate the updated final results. Incremental MapReduce 
re-computes the Reduce instance associated with each 
changed MRBGraph edge. For a changed edge, it queries the 
MRGB-Store to retrieve the preserved states of the in-edges 
of the associated K2, and merge the preserved states with 
the newly computed edge changes. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

7 Implementation 
 
7.1 Performance and result for mapReduce 
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Fig 2: Performance of MapReduce 

 

 

 

Fig 3: Result of map and Reduce 
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Fig 4: Analytic Report for MapReduce 

 

 

Fig 5:Analytic Report for MapReduce 
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8. CONCLUSIONS 
 

 In this work ,we focus on the problem  of stale of 
data when data are frequently arriving data .To avoid this we 
are using incremental MapReduce along with k-nearest 
neighbour.i2MapReduce combines a fine-grain incremental 
engine, a general-purpose iterative model, and a set of 
effective techniques for incremental iterative computation. 
Real-machine experiments show that i2MapReduce can 
significantly reduce the run time for refreshing big data 
mining results compared to re-computation on both plain 
and iterative MapReduce. 
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