
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 06 | June-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 559

Design an Acceleration Framework That Optimizes Hadoop

Madhav D.Ingale1, Vaibhav Pathare2, Ankita Nirmal3 , Diksha Wadkar4

Assistant Professor, Dept. of Computer Engineering, JSCOE, Hadapsar, Pune, India1

UG Student, Dept. of Computer Engineering, JSCOE, Hadapsar, Pune, India2,3,4

---***---

Abstract - Big data is a collection of large amount of data
which cannot be processed using traditional computing
techniques. Big data contains data produced from Black box
data, social media data, transport data. It also includes huge
volume, high velocity and extensible data of the following
types as structured, semi structured and unstructured data.
Hadoop technology is a popular open source code of the
MapReduce programming model for cloud computing. It faces
a multiple of issues to achieve the best performance from the
particular systems. These include a serialization barrier that
delays the reduce phase, cyclic merges, and disk accesses, and
the lack of portability to different interconnects. To keep up
with the increasing volume of data sets, Hadoop also requires
efficient I/O capability from the underlying computer systems
to process and analyse data. We describe Hadoop-A, an
acceleration framework that optimizes Hadoop with plug-in
components for fast data movement, overcoming the existing
limitations. A novel network-levitated merge algorithm is
introduced to merge data without repetition and disk access.
In addition, a full pipeline is designed to overlap the shuffle,
merge, and reduce phases. Our experimental results show that
Hadoop-A significantly speeds up data movement in
MapReduce and doubles the throughput of Hadoop. In
addition, Hadoop-A significantly reduces disk accesses caused
by intermediate data.

Key Words: Big Data, Hadoop, HDFS, MapReduce, Hadoop
acceleration, CPU Usage.

1.INTRODUCTION

In Hadoop using MapReduce emerged as a popular and easy-
to-use programming model for cloud computing. It has been
used by multiple organizations to process explosive amounts
of data, perform difficult computation, and extract critical
knowledge for organisation intelligence. Hadoop implements
MapReduce framework with two categories of components:
1) JobTracker and 2) Task-Trackers. The JobTracker
commands TaskTrackers (slaves) to process data in parallel
through two main functions: map and reduce. In this process,
the JobTracker is in charge of scheduling map tasks
(MapTasks) and reduce tasks (ReduceTasks) to
TaskTrackers. It also monitors their progress, collects
runtime execution statistics, and handles possible faults and
errors through task re-execution. Between the two phases, a
ReduceTask needs to fetch a part of the intermediate output

from all finished MapTasks. Globally, this leads to the
shuffling of intermediate data (in segments) from all
MapTasks to all ReduceTasks. For many data-intensive
MapReduce programs, data shuffling can lead to a significant
number of disk operations, contending for the limited I/O
bandwidth. This presents a severe problem of disk I/O
contention in MapReduce programs, which entails further
research on efficient data shuffling and merging algorithms.
It remains as a critical issue to examine the relationship of
Hadoop MapReduce’s three data processing phases, i.e.,
shuffle, merge, and reduce and their implication to the
efficiency of Hadoop.

2.RELATED WORK

Hadoop is a popular open source implementation of the
MapReduce programming model for cloud computing.
MapReduce implementation enables a convenient and easy-
to-use data processing framework.

In today’s technical era handling the big data is major
issue. The many Authors are working on the different
techniques and algorithm for handling the big data. The
author Paolo Costa, et al. built Camdoop technique. Social
media like Facebook , Google, Microsoft etc. generates the
huge amount of data which is responsible for high network
traffic and difficult to support using traditional system. Thus,
Camdoop technique is used to reduce network traffic and it
also provides the high performance [1].

To simplify fault tolerance in map-reduce programming
model to actualize the output of each map and reduce the
task before it used. The authors Tyson Condie, et .al
proposed modified map-reduce architecture data to be
pipeline between operator where intermediate data is
pipelined. There are three techniques introduced by author
Online Aggregation, HOP(Hadoop Online Prototype),Pipeline.
1.Online Aggregation:-As soon as mapper produces the data
which has been immediately processed by reducer. Thus task
can be completed in efficient time.2.HOP(Hadoop Online
Prototype):-It is used to support continuous queries that
map-reduce job run continuously, accept the new data when
it arrives and analyze it. 3.Pipeline:-It increases the chances
of of parallelism, it improves utilization and reduces the
response time [3].

Current map-reduce system requires dataset to be loaded
into cluster before running queries because of that there is
issue arise like high delay to start query processing. Thus
authors Edward Mazur, Boduo Li introduced one pass
analytic technique. This technique is used to reduce the delay
in query processing [5]. Map-reduce based system is slower

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 06 | June-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 560

than Parallel Database system in performing variety of tasks.
Because there is performance gap between the Map-reduce
and Parallel Database system. For achieving scalability and
flexibility in Map-reduce system authors Dawei Jiang, et .al
designed a system such that it is independent of storage
system and it analyzes various kind of data like structured
and unstructured. And it improves the performance of map-
reduce system [6].

In traditional system to run single program in map-reduce
framework the system administrator need to set number of
running parameter. The author Shivnath Babu, make a case
for technique to automate setting of tuning parameter of
map-reduce programming which used to provide ad-hoc
map-reduce program on large amount of data [7]. Parallel
programming techniques like message passing, shared
memory, it is difficult to write correct and scalable parallel
code .The author Colby Ranger, et .al implemented phoenix
technology it automatically manages thread creation, data
partitioning, and fault tolerance across processor nodes.
Phoenix technology used to increase the performance of
multicore system and recover the errors [8].

Authors Jiuxin, et .al proposed design of MPI over infini-
band which aquires the benefit of RDMA to large messages as
well as small and control messages which improves the
better scalability by combining RDMA operations like send or
receive. RDMA based design used to reduce latency by 24%
and increases the bandwidth by over 104% also reduce the
overhead up-to 22% [9].In past decades author implemented
some special purpose computation that process large amount
of raw data like crawled documents, web request logs etc. for
computing various kind of derived data but this computations
are straightforward which cannot handle issues like how to
parallelize the computation ,distribute the data and handle
computations with simple computation on large amount of
data. Jeffery Dean, et .al who propose a new approach which
used for map reduce programming model where map
function process key value pairs and generate intermediate
key value pairs and reduce function merges all values
associated with intermediate key [10].

Our characterization and analysis reveal a number of
issues, including:

 1)The serialization between Hadoop shuffle/merge and
reduce phases.

 2)Repetitive merges and disk access,

 3)The lack of portability to different interconnects.

3.PROPOSED METHODOLOGY AND DISCUSSION

1. Network-levitated merge
Hadoop resorts to repetitive merges because of limited
memory compared to the size of data. For each remotely
completed MOF, each ReduceTask invokes an HTTP GET
request to query the partition length, pull the entire data,

and store locally in memory or on disk. This incurs many
memory loads/stores and/or disk I/O operations.We
design an algorithm that can merge all data partitions
exactly once and, at the same time, stay levitated above
local disks shows our network-levitated merge algorithm.
The key idea is to leave data on remote disks until it is time
to merge the intended data records.

2.CPU Usage

1. System A and System B calculate the cpu usage.
2. System A have dataset for processing.
3. System A request to system B for cpu usage.
4. After receiving tha cpu usage it compare its own cpu usage
and System B cpu usage.
5. According to that cpu usage its create the chunk.
6. Upload data on HDFS of corresponding System.
Process that data.
7. After processing that data System A download the data
from system B.

4. SYSTEM ARCHITECTURE

Two new user configurable plug-in components,
MOFSupplier and Net- Merger, are introduced to leverage
RDMA-capable interconnects and enable alternative data
merge algorithms. Both MOFSupplier and NetMerger are
threaded C implementations. A primary requirement of
Hadoop-A is to maintain the same programming and control
interfaces for users. To this end, we design the MOFSupplier
and NetMerger plugins as native C programs that can be
launched by TaskTrackers.

Fig-: Hadoop Architecture

Fig-: CPU usage(Multi-node)

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 06 | June-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 561

Task tracker accepts the tasks like Map, Reduce, Shuffle from
job tracker. Job Tracker is used to keep the track of which
Map-Reduce jobs are executing, schedules Maps, Reduces
operation tasks to specific machine, monitors the success and
failures of these tasks After finishing the tasks it notifies to
jobtracker. Hadoop programs can run without any change
when the Hadoop-A plug-in is activated.

5.Experimental results

Fig-:CPU usage

Fig-:Content of Directory.

CONCLUSIONS

In proposed system, we first calculate the cpu usage of the
system. Depend on that cpu usage we distribute the dataset.
The distributed dataset loaded on the corresponding HDFS
system. So system is ready to process dataset. After
processing dataset we can download that. So we distribute
dataset depend on cpu usage of system, so performance of
system is increases.

REFERENCES

[1] [1] P. Costa, A. Donnelly, A. Rowstron, and G. O’Shea,

“Camdoop: Exploiting in-Network Aggregation for Big
Data Applications,” Proc. Ninth USENIX Conf. Networked
Systems Design and Implementation (NSDI ’12), p. 3,
2012.

[2] [2] X. Que, Y. Wang, C. Xu, and W. Yu, “Hierarchical
Merge for Scalable MapReduce,” Proc. Workshop
Management of Big Data Systems (MBDS ’12), pp. 1-6,
2012.

[3] [3] T. Condie, N. Conway, P. Alvaro, J.M. Hellerstein, K.
Elmeleegy,and R. Sears, “MapReduce Online,” Proc.
Seventh USENIX Symp.Networked Systems Design and
Implementation (NSDI), pp. 312-328,Apr. 2010.

[4] [4] Vaibhav Dhore and Sonali R. Jagtap, A Survey on
Hierarchical Merge for Hadoop-A, International Journal
of Science and Research (IJSR) ISSN (Online): 2319-7064
Index Copernicus Value (2013): 6.14 | Impact Factor
(2013): 4.438

[5] [5] B. Li, E. Mazur, Y. Diao, A. McGregor, and P. Shenoy,
“A Platform for Scalable One-Pass Analytics Using
MapReduce,” Proc. ACM SIGMOD Int’l Conf. Management
of Data (SIGMOD ’11), pp. 985- 996, 2011.

[6] [6] D. Jiang, B.C. Ooi, L. Shi, and S. Wu, “The Performance
of MapReduce: An In-Depth Study,” Proc. VLDB
Endowment, vol. 3,no. 1, pp. 472-483, 2010.

[7] [7] S. Babu, “Towards Automatic Optimization of
MapReduce Programs,” Proc. First ACM Symp. Cloud
Computing (SoCC ’10), pp. 137-142, 2010.

[8] [8] C. Ranger, R. Raghuraman, A. Penmetsa, G.R.
Bradski, and C. Kozyrakis, “Evaluating MapReduce for
Multi-Core and Multiprocessor Systems,” Proc. IEEE
13th Int’l Symp. High Performance Computer
Architecture (HPCA ’07), pp. 13-24, 2007.

[9] [9] J. Liu, J. Wu, and D.K. Panda, “High Performance
RDMA-Based MPI Implementation over InfiniBand,” Int’l
J. Parallel Programming, vol. 32, pp. 167-198, 2004.

[10] [10] J. Dean and S. Ghemawat, “MapReduce: Simplified
Data Processing on Large Clusters,” Proc. Sixth Symp.
Operating System Design and Implementation (OSDI
’04), pp. 137-150, Dec. 2004.

[11] [11]
http://www.tutorialspoint.com/hadoop/index.htm

[12] [12] Apache Hadoop Project,
http://hadoop.apache.org/, 2013.

http://www.tutorialspoint.com/hadoop/index.htm

