
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 426

Continuous Integration, Deployment and Delivery Automation in AWS

Cloud Infrastructure

K. Sree Poornalinga1, Dr. P. Rajkumar2

¹P.G Scholar, INFO Institute of Engineering, Coimbatore, Tamil Nadu, India.

²Professor, INFO Institute of Engineering, Coimbatore, Tamil Nadu, India.

---***---
Abstract - Agile and DevOps are emerging best practices in

the software engineering world which dictates the prominence

of Continuous Integration, Deployment and Delivery as one of

the essentials in supporting every single software development

team. Automating the integration, deployment and delivery of

software development is one of the key solution for attaining

productive growth in software industries where by which the

ideas of agile and DevOps can be turned into practical

solutions. Our research shows that in spite of their massive

benefits, the automation of these two practices has not yet

been significantly inclined with many organizations where

software developers struggles to integrate and deploy the code

with main lane and different environments respectively. In this

paper, we demonstrated a newly structured cloud

Infrastructure called “Continuous Integration, Deployment

and Delivery (CIDD) in Cloud Infrastructure” in which the

complete automation of the Continuous Integration,

Deployment and Delivery are done and experimentally tested.

Our analysis shows that the proposed pipeline providing a

productive environment for the developing team to automate

the build and deploy their code up to the production line and

the automation system effectively helps in saving the time and

cost by increased software quality and productivity.

Key Words: Agile, DevOps, Cloud Infrastructure,
Continuous Integration, Continuous Deployment and
Continuous Deliver.

1. INTRODUCTION

Traditional Software Testing and Deployment are being extra
challenging in every traditional development practices. Agile
and DevOps are emerging best practices which diminishes
the weight of traditional software development. Software
testing is trickier when it comes to Integration of a build with
the main lane projects. Traditional practices (Requirement,
Design, Code Build, Testing, and Maintenance) holds Software
Testing as one sovereign phase. This type of approach is
erroneous for the reason that the earlier detection of error
saves more time and funds. For instance, fixing a bug at
maintenance stage is ten times more lavish than fixing it in
the stage of implementation. Recent practices like agile

methodologies has enriched the approach by including
testing at every stage of software development. But, still
voluminous enterprises habit traditional testing methodology
where software testing is typically accompanied later a build
and implementation phases. Similarly, in earlier days every
companies upholds two different teams for the production of
software development viz., Development team and
Operational team. However both teams used to work on the
identical product, their goal lines are utterly opposite to each
other. The aim of Development team is pushing for the
feature changes, whereas the goal of Operational team is
striving for stability. But today, things have improved,
profoundly. A complete transition is made by means of new
tools like cloud infrastructure and virtual technologies. This
type of cultural change combines both the development and
operational teams into one thin fast deployment machine to
manage the infrastructure which is called DevOps as in [6]. In
summary, agile and DevOps are two emerging practices that
provide big transition to the cultural change of every software
organization for productive development. By adopting to
automated continuous integration, deployment and Delivery
practice, the ideas of agile and DevOps can be turned into
practical solutions. Continuous Integration (CI) is a crucial
section of Agile and DevOps practices as in [1] [8] and [9]. CI
is a key practice that frequently integrates a build with
mainline shared repository by each developers in a
developing team. This type of integration avoids a developer's
local copy of code from drifting too extreme as soon as new
code is affixed by other developers, avoiding disastrous
integration conflicts.

In practice, CI comprises of a centralized server which
constantly check-ins all the new source code changes as soon
as the developers commit them, reporting any failures
during a build as in [3]. CI server compiles, build, and tests
every single fresh version of code committed to the main
repository, it makes sure that the whole developing team is
notified any time the mainline repository holds broken code.
In advance, the CI server also deploy the verified application
to quality assurance otherwise staging environment,
safeguarding the Agile dream of a regular working version of
the software product. Development teams take more than a
few days for the Deployment process, even in cases of using
automated CI to make sure that the code has been
completely tested.

Continuous Delivery is an extended version of Agile
Development. Continuous Delivery as in [4] takes the idea of
Continuous Integration to the next succeeding footstep. As

http://qatestlab.com/pressroom/qa-testing-materials/start-software-testing-on-early-stages-how-does-this-affect-cost/
http://qatestlab.com/company/why-software-testing/

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 427

soon as the product is built, after the completion of CI
process, delivering it to the subsequent stages is one other
difficult jobs. At first the code needs to be delivered to the
quality assurance (QA) team for testing and then to the
Operational team (the Ops in DevOps) designed for
transferring it to the production system. The objective of
Continuous Delivery is to acquire the new features that the
developers are building, out to the customers and users as
soon as possible.

However, automating continuous deployment as in [5] is
complex, time intense and frightening, also it is not typically
precise how to go about it. One key solution to these problem
is to automate the process of software build, testing,
deployment and delivery to the product reaches the
production environment. Doing the automation at the early
stages of project development provide immediate worth.
This could save time, cost and also helps detecting glitches
with deployment timely in the development cycle, where
fixing the problem becomes inexpensive too. In this paper,
we have created an Infrastructure called “Continuous
Integration in Cloud Infrastructure (CICI)” in which the
complete automation of the Continuous Integration,
Deployment and Delivery are done and experimentally
tested. The analysis shows that the proposed infrastructure
delivers a complete pipeline based automation of productive
environment for the developing team to a build and then
deploy their code to the production line. Industries by
adopting to such cultural change are expected to deliver
productive and fast development.

2. SCOPE OF THE PAPER
This paper compiles by the research started last June, 2015
up to March, 2016. Our research is all about automating the
process of continuous integration, deployment and delivery
in every software industries for productive their software
development environment. The scope of this project is to
encourage the corporate world to make benefit of available
automation practices and tools.

3. ISSUES
Our research found that 30% of the software companies still
uses traditional software development practices, less than
65% of the software organization implements the manual
CIDD, and very few core companies (e.g., Microsoft, Google,
Facebook, LinkedIn and Netflix) adapted to automated CIDD
practice. This visibly confirms that the value of Continuous
Integration has not yet significantly recognized by the
software engineering world as in [3] [4].

3.1. Problems in the Manual-CI
By performing continuous integration in the manual they
would face lots of human errors where the developer
struggles to create the clean build. Since the integration is a
tedious task, as in [2] the manual integration will take time,
which sometimes leads to software failure. As far as a build

is not clean, there is no ready-end delivery product which
will highly reduce the software productivity and its quality.

3.2. Problems in Automated-CI
The companies who have automated the continuous
integration practice also face the following problems: at the
outset, one is the lack of knowledge of continuous
integration tools and its environment as in [2] [3]. The
automating tools and the automated environment is new to
the developing team, so developers take time to learn the
environment. Next, bigger the team (and the code base), the
more often a build get broken. A broken build should be
quickly fixed. The longer it takes to fix them, the higher
possibility for the project to fail. And in many companies the
target of the people is to build a product, but not to fix the
broken code. To simply put, product owners do not
understand the importance of a “clean build”. It’s been found
that most of the development teams in many organization
doesn’t take alerts from CIDD seriously. A machine that
continuously bounces red signal, that’s how it looks to them.

4. PROPOSED INFRASTRUCTURE
The goal of the proposed infrastructure is to make the
transformation of the manual Continuous Integration,
Deployment and Delivery to automated CIDD and to simplify
the Software Development Life Cycle for the software
developers. Finally, we tend to enforce this beneficial
discipline for each development team in industries by
projecting the best in CIDD practice to the software
engineering world.

We created an Infrastructure called CIDD that automates
the Continuous Integration, Deployment and Delivery
practice in an AWS Cloud Infrastructure for the
improvement of software quality and productivity, which is
as shown in Fig. 1. The proposed infrastructure provide a
complete automated environment from build to production
for the developing team to build their product in an efficient
manner. The automations are done by using selective tools
and technologies available in the market. CIDD automates
consist of the following five automated stages:

4.1. Source Code Analysis
This stage of the proposed infrastructure works by assisting
a code analysis tool which would make the source code less
error-prone, more sustainable, more reliable, more readable,
more welcoming to new contributors as in [3]. It is a
compulsory step for the projects keen to go into the CICI, as
the analysis process depend on code metrics extracted by
Sonar. The main goal of this phase is to have
quantitative measurements of the code quality and analyze
the metrics of code to come up by a set of standard
measurements.

Sonar helps in achieving these goals in addition to
providing tools to instantly evaluate and monitor the
standings of any project with respect to provided
benchmarks. This also help decision makers in determining
the issues, if accepted, offers the major increase in the

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 428

quality. Furthermore, this tool helps developers in assessing
of risk within their current software.

4.2. Continuous Integration Automation
Organizations evidently need to capitalize the build
automation and test automation if they need to scale up and
deliver features faster and release more often. This
speculation can be expensive, but the manual approaches are
visibly not scalable as in [1] [9]. As well, automation of build
and test have a tendency to crop much sophisticated
software quality.

4.2.1. Automated Build
Automating a build have turn out to be a foundation stone
for agile development. Each time a developer checks in a
code/change, Maven together with Jenkins checks out all the
source code, build everything, runs all the unit tests and
finally gives instant feedback. This part of automation is
known as Continuous Integration (CI).

Fig - 1: CIDD in Cloud Infrastructure

4.2.2. Automated Testing
This is the risky part and most of the disclosures are
encountered as we move from development in the direction

of deployment into production. Test automation using
Jenkins has been integrated into the CIDD. Whenever a test is
passed, a new version can be built and a series of automated
tests can be run against it. Outcomes from the test
automation is used to vote to accept or reject contributions,
this being a part of the workflow. Doing the integration test
earlier in project development helps in revisiting
incrementally as the requirements and system evolve.

4.3. Continuous Deployment Automation
Performing continuous deployment by means of Jenkins
provide a great free solution for continuous build. However,
once setting up a build code, build triggers, notification, data
collection, and the subsequent step is to perform the
deployments. This is in general performed by setting up a
Jenkins’s agent on the desired host where the code want to
be deployed and by running a shell command along with the
help of the Jenkins. A lot of times these kinds of deployments
are too simplistic to go further than the testing environment.
They take a shell script that replicates a war file which is
determined not to work in full life-cycle and call for the
target system(s) to be in a specific state which is usually
done by manual process. The complete life-cycle deployment
worth automatically deploying the application to entire
environments from development on the way to production
as in [5]. By means of this automation level, it is desirable to
study the database fluctuations, configurations and
integration points.

4.4. Continuous Delivery Automation
Continuous Integration covers the first principles of
Continuous Delivery. Automating the continuous delivery
entails that every single successful build will be made
obtainable to the production line as in [4] [8]. The choice of
whether or not to deploy a build to the production
environment is entirely up to the developer.

5. INTRODUCTION TO AUTOMATION TOOLS

Appreciatively, implementing the complete automation of
Continuous Integration, Deployment and Delivery doesn't
require any specialized toolsets outside of the common
toolset which is available in the market. Several numbers of
tools are available for the automation of these Agile and
DevOps practices, where a careful selection of tools based of
the business infrastructure is needed for the creation of CICI.
A simple demonstration for selecting most popular tools are
provided as in [5].

5.1. Jenkins
Jenkins is an open-source Continuous Integration server, like
Hudson, Cruise Control, etc. CI server, it's fundamentally an
overvalued scheduler in a nutshell, it executes a single build
scripts whenever there is a trigger as in [5]. Jenkins has a
build pipelines plugin, which was written in recent times by
Centrum Systems. This pipeline gives exactly what the
organization wants, like a way of breaking the build into
smaller loops, and running stages in parallel.

Fig. 2. Jenkins Dashboard

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 429

Installing Jenkins is very simple. One of the best things about
Jenkins is the way it customs plugins, and how modest it is to
get them up and running. The "Manage Jenkins" page has a
"Manage Plugins" link on it, which provide the list of all the
accessible plugins during Jenkins installation.

5.2. Sonar
Java Sonar is an open source web-based program analysis
tool that allows developer to manage code quality. Using
statistical code analysis tools, Java Sonar combines metrics
self-possessed and reports on the standards of code quality
measures such as: Code Duplication, Module Testing, Code
Coverage, Coding Standards, Architectural Design, Code
Complexity, Comments, and Potential bugs. In spite of the
complexity of faced while data collection, Sonar has fairly a
simple architecture, which is consist of three parts. First part
is the Code analyzers which band together in a Maven plugin,
and run on demand. These code analyzers are able to run
both in Maven and non-Maven projects. Next is the Database
which stores the output reports of the analyzer. They are
stored along with the historical data’s and project
configurations. Sonar works on the bases of fixed rules
which is compared for code quality. Sonar dashboard
elaborates the software quality information on all of
incoming projects combined, as well as on each individual
one which is as shown in the Fig - 3.

The statistics for the well ahead can be attained at the
packages and modules level. Also, the several metric and
comparison tools are present in this analyzer. Defect hunting
is a tool that allows developer to get a better look at what is
reported as an issue. And there available a Time Machine
that records analytics of the project over time, so that one
can able to watch how a project has evolved. Observing at
the analytic reports of time machine, it allows us to
understand how different approaches affect the project line.

While Java Sonar gives us all of the information that could
possibly needed for observing the quality of software code, it
claims fairly an unsophisticated architecture. A set of code
analyzers, a database, and a web reporting tool that would
give us all the information needed to know. Though Java is
the primary supported language of Sonar (hence Java Sonar),
it also supports the languages viz. C, C#, Flex, PHP, PL/SQL,
COBOL, Visual Basic 6, and Python by the help of plugins.

5.3. Maven
Apache Maven is a software project management and
command tool. Grounded on the model of a project object
model, Maven can cope up with a code build, reporting and
documentation from the central piece of information
available from code analysis. Maven’s main goal line is to
allow the developer to figure out the comprehensive state of
a development effort in the shortest period of time. In order
to achieve its own objective there are several areas of
concern that Maven challenges to deal with: a build process
becomes stress-free, providing a uniform build system,
quality project information, guidelines provided for
development best practices, and allows transparent
migration to new features.

6. RESULT AND DISCUSSIONS

The proposed infrastructure has been tested experimentally
with the help of a demo web based Maven project called
“Web CAR RENTAL SYSTEM”. Our observation shows that
the complete automated pipeline worked magically over the
testing and deployment process within expected short time.
Our report clearly shows that the proposed infrastructure
could provide more productive product in development for
companies adopting to “CIDD” based Agile and DevOps
practices. The demo report of the implemented
infrastructure “CIDD” has given more in detail for reader’s
reference. By observing the performance of the proposed
infrastructure, we strongly believe that it would be more
productive for companies adopting to CIDD based Agile and
DevOps practices.

Fig – 3: SONAR Dashboard

Fig – 4: Code Complexity Metrics

Fig – 2: Jenkins Dashboard

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 430

Fig – 5: AWS Cloud Infrastructure – CICI

We have created a cloud infrastructure for the automation of
continuous integration, deployment and delivery using the
Amazon Web Service (AWS). Jenkins, Sonar, Assembla,
Maven and other supporting tools and technologies was used
to create the CIDD Automation System. Jenkins is the
continuous integration server which is integrated together
with maven tool for java support using which the build and
test are automated successfully. The console output of
successful build and test of web car rental is as shown in the
Fig. 5. Maven helps us to clean and install the fresh project
many times instantly. This tool also helps us to verify, test
and deploy the code at the desired server or environment.

After the successful build the code is then checked into
Sonar, the source code analysis tool which follows rules from
best practices to identify issues and measure the code
quality. Fig. 6 shows the issues in web car rental system
found by Sonar. Also, the code quality complexity of the

project is as shown in Fig. 4. Continuous integration helps in
check in code quality and reports every successful/failure
build and issues found in the code that adopts to DevOps
culture by means of visible operations.

CIDD deployment server automates the deployment process
throughout the software lifecycle and the continuous
delivery process is automated which release the final
product to the production environment after the complete
verification of product functioning at the preproduction
staging environment. The graph shown in the Fig. 8 depicts
the report analysis of CIDD system of automation accuracy in
the integration, deployment and delivery as 90, 94 and 99
percentage respectively.

7. CONCLUSION AND FUTURE WORK
The main focus of our research is to dig out the importance
of continuous integration, deployment and delivery in the
software engineering world. Automating these practices
often considered to be complex and frightening. However,
we have examined the configurations involved in building a
productive software development environment for
development to production. In this paper, we demonstrated
a newly structured infrastructure called "Continuous
Integration, Deployment and Delivery (CIDD) Automation in
Cloud infrastructure" using selective CI tools and amazon
cloud services. Also, the proposed infrastructure has been
demonstrated using a demo maven project "Web Car Rental
System". The experimental evaluation of the proposed
infrastructure has been explored the balance between
development team and operation team. This prominent
cultural change that would provide productive and quality
development.

Our research found the importance of adopting agile
practice for mobile application development, which would
be used widely in the future. Researches are going on
exploring difficulties in applying CIDD practice to mobile
environment. Therefore, we target to enhance the CIDD
Infrastructure for mobile application development in future.

Fig – 6: Jenkins - a Build and Test Report

Fig – 7: Automatic Issue Tracker - SONAR

Fig – 8: Accuracy Analysis of CIDD Automation

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 431

REFERENCE

[1] Alexander Eck, Falk Uebernickel, And Walter Brenner
(2014), “Fit For Continuous Integration: How
Organizations Assimilate An Agile Practice”, Twentieth
Americas Conference on Information Systems,
Savannah.

[2] Duvall P, Matyas S, and Glover A, “Continuous
Integration: Improving Software Quality and Reducing
Risk”, Addison-Wesley, 2007.

[3] Martin Fowler, Robert. “Continuous Integration”,
http://www.martinfowler.com/articles/continuousInt
egration.html , May 2006.

[4] Jez Humble, David Farley, “Continuous Delivery:

Reliable Software Releases through Build, Test, and
Deployment Automation”, Addison-Wesley, 2010.

[5] Leppanen, M. (2015)”The Highways and Country Roads

to Continuous Deployment”, Software, IEEE (Volume:
32, Issue: 2), pg. 64 – 72.

[6] Len Bass, Ingo Weber, Liming Zhu, “DevOps: A Software

Architect's Perspective”, Pearson Edu, 2015.

[7] Meyer, M. (2014), “Continuous Integration and Its

Tools”, IEEE Software, Vol: 31, Issue: 3, pg. 14 – 16.

[8] Manish Virmani (2015) “Understanding DevOps &
Bridging The Gap From Continuous Integration To
Continuous Delivery”, Innovative Computing
Technology (INTECH), IEEE, pg. 78 – 82.

[9] Sean Stolberg (2009) “Enabling Agile Testing Through

Continuous Integration” Agile Conference, AGILE’09,
IEEE, Pg. 369 – 374.

http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Leppanen,%20M..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=52
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=7057030
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=%22Authors%22:.QT.Meyer,%20M..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/tocresult.jsp?isnumber=6802981
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7166535
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7166535
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7166535
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5261035
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5261035
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=5261035

