
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 342

Open Source Software Evolution And Metric

Sandeep Singh1, Prithvipal Singh2

1Assistant Professor, CSE, G.N.D.U RC Gurdaspur, Punjab
2Research Scholar, CS, G.N.D.U, Amritsar, Punjab

---***---

Abstract - Open Source software evolution (OSS) has
becoming widely adopted by Commercial, Public and
Academic organizations. OSS has increased in abundance in
few years due to the success of well known OSS such as VLC,
Mozilla, Linux, Apache etc. This paper presents an analysis of
the evolution of various open source software’s with the help
of SDMetric tool that used to obtain the metric and observe the
quality change along the evolution of various versions of OSS.
In addition, this paper gives a brief literature survey on OSS
evolution and Lehman's seven laws of software evolution.
SDMetric tool captures the combined effect of multiple
influencing factors such as Coupling between components, Size
of packages, Complexity of classes in all in one cohesive model
and Translates non-interpretable internal quality data to
easily interpreted external quality data in form of Metric Data
Tables, Histograms, Kiviat Diagrams.The metric data output
shows the evolution affect on various released versions of OSS.

Key Words: Software evolution, SDMetric, Lehman’s
Laws, Histograms, Kiviat Diagrams.

1. INTRODUCTION

Software evolution reflects “a process of progressive change
in the attributes of the evolving entity or that of one or more
of its constituent elements” [1]. Specifically, software
evolution is related to how software systems evolve over
time [2]. Computer software can be generally divided into
two development models, which are proprietary and OSS.
Proprietary is closed software and the source code is not
typically made public, and this kind is owned by an
individual or company. OSS is the acronym for Open Source
Software, which is becoming widely adopted by commercial,
public and academic organizations. OSS uses open source
codes that are unrestricted and freely available by
downloading from the Internet. There are a number of OSSs
available, ranging from simple email software to Internet
servers such as Apache, full operating systems such as Linux,
and Java's type safe nature Guice [3,4].

The evolution of OSS has two shapes, which are the
development of the requirement of the application and the
maintenance of the code of software. The main aim of this
paper is to discuss and focus on the evolution of OSS. It

analyses OSS and monitor the evolution using metric
technology

2. Software Evolution

Open Source Software (OSS)[10] has becoming widely
adopted by commercial, public and academic organisations.
Currently, there is increasing interest and demand in the
existing applications of OSS in all fields all over the world. OSS
has increased in prominence in the last decade, mostly due to
the success of well-known software organisations such as
Apache, Mozilla, Linux and Guice. As these organisations have
become more dependent on software, the effective
management of Software Evolution (SE) becomes more
critical to an organization’s success. OSS firstly evolved
throughout the 1970s. Richard Stallman, who is an American
software developer, proposed that sharing source codes and
ideas is essential to developing a free edition of UNIX. The
GNU program was released under the newly created General
Public License (GNU GPL).

Controlling SE for huge OSS is a most important challenge
in these days. There are many factors that build software are
hard to maintain, distributed, and easy modify and explicit
project planning. Therefore, the big challenge of OSS is how to
evolve its environment, especially the improvement of the
Design of these systems. Therefore, the provision of well-
evolved OSS has become an urgent issue in these days and
will be so in the future. Therefore, the major challenge in OSS
is how to evolve its environment, especially improvements in
the security and quality of these systems.

Lehman’s eight laws of software evolution first
formulated in the early 1970s, in Belady and Lehman’s study
on the evolution of OS/360 [5], these laws essentially
characterize the software evolution process as a self-
regulating and self-stabilizing system, subject to continuing
growth and change [6,7,8]. The laws are named after traits of
the software evolution process: “I - Continuing Change”, “II -
Increasing Complexity”, “III - Self Regulation”, “IV -
Conservation of Organizational Stability”,“V - Conservation of
Familiarity”, “VI – Continuing Growth”, “VII - Declining
Quality”, and “VIII – Feedback System”.

Some Examples of Open Source Software are: Linux, GNOME,
KDE, Apache, Firefox, Dovecot, Postfix, Squirrel mail,
Thunderbird, Open office, K office, Asterisk, Free switch,
Gnugk.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 343

3. OSS: Related Work

To paint a clearer image of the software evolution process[9],
Researchers has performed an empirical study on long spans
in the lifetime of seven open source projects. Their analysis
covers 653 official releases, and a combined 69 years of
evolution. Where they first tried to verify Lehman’s laws of
software evolution and analyse the growth rate for projects’
development and maintenance branches, and the distribution
of software changes. They have find similarities in the
evolution patterns of the programs they studied, which
brings them closer to constructing rigorous models for
software evolution. The results indicate that Continuing
Change, Increasing Complexity, Self-Regulation, and
Continuing Growth are still applicable to the evolution of
today’s open source software.

For real-world software to remain satisfactory to its
stake-holders requires its continual enhancement and
adaptation [10]. Acceptance of this phenomenon, termed
software evolution, as intrinsic to real world software has led
to an increasing interest in disciplined and systematic
planning, management and improvement of the evolution
process. This paper presents an analysis of the evolution
behavior of two small size open source software systems, the
Barcode Library and Zlib. Surprisingly, unlike large scale
open source software systems, the evolution behavior of
these small size open source software systems appears to
follow Lehman's laws for software evolution.

The main aim of this paper is to measure the evolution of
OSS using, Eclipse Metrics (EM), with Guice software (GS) as a
case study. An analysis of OSSE by using Eclipse Metrics
(EMs) with Guice Software (GS) as a case study. The study
depends on two versions of GS and it will discover the
difference between these versions through five EMs, and it
also will examine three areas in the GS code, which are: 1)
package metrics, 2) type metrics 3) and method metrics. This
study found that a number of different concepts on SE drives
the OSS industry, such as security, quality, and the reliability
of reusability. Therefore, the future of SE should consist of
industrial rules for OSS. In addition, some OSSs are still being
challenged by closed software because their evolution and
development are often faster than those of OSSs[10].

Software systems increasingly require to deal with
continuous evolution [11]. In this paper we present the
EVOSS tool that has been defined to support the upgrade of
free and open source software systems. EVOSS is composed
of a simulator and of a fault detector component. The
simulator is able to predict failures before they can affect the
real system. The fault detector component has been defined
to discover inconsistencies in the system configuration
model. EVOSS improves the state of the art of current tools,
which are able to predict a very limited set of upgrade faults,
while they leave a wide range of faults unpredicted. we

proposed the EVOSS tool for managing the evolution of free
and open source software. A simulator and a fault detector
are the main components of EVOSS and they have been
defined to predict upgrade failures before they can affect the
real system. EVOSS has been experimented in real Linux
distribution installations and these experiences show that
EVOSS improves the state of the art of package managers.

Source code analysis is important for software
management [12]. It enables us recognize strengths and
weaknesses in our earlier projects or releases. We developed
a source code analysis tool. This tool gathers several metrics
from C/C++, C# or Java source codes. In this paper, we will
use the tool to analyze some of the open source code projects.
We will study the selected projects release evolutions and
compare some characteristics between the same project
releases, as well as among different projects. Different
programming language code and development styles will be
studied through those open source projects. SWMetric is a
tool we developed to gather metrics on the function and the
class level.

While many theoretical arguments against or in favour of
open source and closed source software development have
been presented [14], the empirical basis for the assessment of
arguments and the development of models is still weak.
Addressing this research gap, this paper presents the first
comprehensive empirical investigation of published
vulnerabilities and patches of 17 widely deployed open
source and closed source software packages, including
operating systems, database systems, web browsers, email
clients, and office systems. The empirical analysis uses
comprehensive vulnerability data contained in the NIST
National Vulnerability Database and a newly compiled data
set of vulnerability patches. The results suggest that it is not
the particular software development style that determines
the severity of vulnerabilities and vendors’ patching
behaviour, but rather the specific application type and the
policy of the particular development community,
respectively.

This paper presents an analysis of the evolution of an open
source software system, JFreeChart, which is an open source
charting library [13], based on its size, fan-in/out coupling,
and cohesion metrics. We developed JamTool, a Java
Automated Measurement Tool to obtain the metrics and to
observe the quality change along the evolution of the twenty-
two released versions of JFreeChart. The empirical study
clearly indicates that there are positive relations between the
number of classes and the fan-in/out coupling, and the added
class group has better software quality than the removed
class group.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 344

4. Metric

SDMetric tool captures the combined effect of multiple

influencing factors such as Coupling between components,

Size of packages, Complexity of classes in all in one cohesive

model and Translates non-interpretable internal quality data

to easily interpreted external quality data in form of Metric

Data Tables, Histograms, Kiviat Diagrams. It takes input as

output generates by UML software with xmi extension.

SDMetric Captures the combined effect of multiple

influencing factors in one cohesive model and Translates

non-interpretable internal quality data to easily interpreted

external quality data

Fig -1: Implementation of SDMetric Tool.

Calculate design metrics for UML designs, such as coupling

between components, Size of packages, Complexity of

classes, etc. SDMetric tool will show the various views such

as Metric, Element, and Table that reflects the whole changes

in that software clearly.

Random Result:

Fig -2: Metric data values of a class.

5. Proposed work:

We will do an analysis of the evolution of various open

source software’s with the help of Software Design Metric

(SDMetric) Tool that used to obtain the metric values and

after that we will observe the quality change along the

evolution of various versions of OSS. Tool will captures the

combined effect of multiple influencing factors such as

Coupling between components, size, and complexity of

classes in one cohesive model and translates into metric data

table values.

6. CONCLUSIONS

 From research work we intend to determine the design of
various versions formed due to evolution in Open source
software with SDMetric tool. Over 120 design metrics, 130
design rules. It Cover all diagram types of the UML i.e. Users
can define new metrics and rules that Works with all UML
tools with XMI export (Customizable XMI import) and Batch
processing via command line interface with Fast execution
that Analyses large designs with hundreds of thousands of
model elements within seconds.

REFERENCES

[1] Madhavji, N.H., Fernandez-Ramil, J., and Perry,

D.:‘Software Evolution and Feedback: Theory and
Practice’, John Wiley & Sons, 2006.

[2] Yu, L., Ramaswamy, S., and Bush, J.: ‘Symbiosis and
Software Evolvability’, IT Professional, 10, (4), pp. 56-
62, 2008.

[3] Guice software, retrieved on 15/3/2009 from
http://code.google.com/p/google-Guice.

[4] Y. Wang, et al. Measuring the evolution of open source
software systems with their communities. SIGSOFT
Softw.Eng. Notes, ACM, New York, USA, vol. 32(6), pp. 7,
2007.

[5] L. A. Belady and M. M. Lehman. A model of large
program development. IBM Systems Journal, 15(3):225–
252, 1976.

[6] M. Lehman. Laws of Software Evolution Revisited. In
European Workshop on Software Process
Technology, 1996.

[7] M. Lehman and J. Ramil. Rules and Tools for Software
Evolution Planning and Management. Annals of
Software Engineering, 11(1):15–44, 2001.

[8] M. M. Lehman, J. F. Ramil, P. D. Wernick, D. E. Perry, and
W. M. Turski. Metrics and laws of software evolution –
the nineties view. In METRICS ’97, pages 20–32, 1997.

[9] S. L. Pfleeger. Software Engineering—Theory and
Practice. Prentice Hall,1998.

[10] The Evolution of Open Source Software using Eclipse
Metrics Ajlan Al-Ajlan Software Technology
Research Laboratory (STRL)De Montfort University The
Gateway ,Leicester,LE19BH,K.ajlan@dmu.ca.uk 2009
International Conference on New Trends in Information
and Service Science.

http://code.google.com/p/google-

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 345

[11] Evolution in Open Source Software: A Case Study
Michael W. Godfrey and Qiang Tu Software Architecture
Group (SWAG) Department of Computer Science,
University of Waterloo email: fmigod, qtug@
swag.uwaterloo.ca

[12] A Survey of Open Source Software Evolution Studies
Muhammad Aufeef Chauhan M.Sc. Software Engineering
Mälardalen University 721 78 Västerås, Sweden.

[13] “Open Source Evolution Analysis” Izzat Alsmadi
,Kenneth Magel 22nd IEEE International Conference
on Software Maintenance (ICSM'06) 0-7695-2354-4/06
© 2006.

[14] "The Future of Software Engineering", Anthony
Finkelstein (Ed.), ACM Press 2000 Order number is
592000-1, ISBN 1-58113-253-0.

