
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 3345

TEST CODE QUALITY WITH ISSUE HANDLING PERFORMANCE

*1 Ms. Harini G., *2 Mrs. Shoba S.A.,

*1 M.Phil Research Scholar, PG & Research Department of Computer Science & Information Technology Arcot Sri

Mahalakshmi Women’s College, Vellore, Tamil Nadu, India
*2Assistant Professor, HOD of PG & Research Department of Computer Science & Information Technology Arcot

Sri Mahalakshmi Women’s College, Vellore, Tamil Nadu, India

---***---

INTRODUCTION: Testability is a major quality factor for

producing high quality software. Lack of testability

contributes to increased test and maintenance effort. The

IEEE Standard Glossary defines testability as the degree to

which a system or component makes possible the

establishment of test Criteria and performance of tests to

conclude whether those criteria have been ISO defines it in

a parallel way: an attributes of software that bear on the

effort needed to validate the software product. The most

well-known definition of testability is easiness of

performing testing. The insight provided by software

testability is significant for the extent of development life

cycle and quality promise. Design-for-testability is a very

important issue in software engineering.

Testability is one of the most important factors

determining the time and effort required to test software

system. A lower degree of testability outcome means

increased test effort. It is essential in the case of Object

Oriented designs where control flows are normally not

hierarchical; it is costly to redesign a system during

implementation or maintenance. It has been concluded

that Flexibility and Modifiability are the two most

important factor affecting software testability

measurement at design phase. Taking into consideration

the significance of their involvement, in this paper we have

proposed a model to measure software flexibility at design

phase.

Software Quality is to calculate a process of

method and components of a system meeting the

necessities that are already specified. We can also say that

in which it can assemble customers or users necessities

also. Relatively a single factor, quality in software is best

viewed as a tradeoff between a set of different goals.

Explicit attention to uniqueness of software quality can

lead to important savings in software life-cycle costs.

Distinctiveness of good quality software includes

the Understand ability, Completeness, Conciseness,

Portability, Consistency, Maintainability, Testability,

Usability and Reliability.

Software metric is one of the significant aspects of

software engineering acts as an indicator for software

attribute. It plays a significant role in understanding the

vital concepts in the field of software engineering Software

Metrics can be defined by measuring.

Software metrics explains the activities connected

with measurements in software engineering. The metrics

are practical to software development process and the

product so as to get the significant information. Software

metrics is classified into two types.

 Static metric

 Dynamic metric

Software Testing and debugging is concerned with the

discovery of defects regarding the functionality and

reliability as defined in a specification or unit test case in

static and dynamic environments. Software product

metrics are used in software analysis to measure the

complexity, cohesion, coupling, or other characteristics of

the software product.

II. Related work

 In broadest terms the properties associated with

structural forms that impact the quality of software

involve two fundamental things: correctness and style.

This is purely an empirical heuristic decision. However it

is not hard to justify to most people that a violation of a

computability property is likely to have a much more

significant impact on correctness than violation of a

consistency property.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 3346

Fig. 1.1 Generic Quality Model

The structural properties focus upon the way

individual statements and statement components are

implemented and the way statements and statement

blocks are composed, related to one another and utilized.

They enforce the requirements of structured

programming and demand that there should be no logical,

computational, representational and declarative

redundancy or inefficiency of any form either in individual

statements or in sequences or in components of

statements. The modularity properties employed largely

address the high-level design issues associated with

modules and how they interface with the rest of a system.

2.1 Test Code Quality

The main role of test adequacy criteria is to assist

software testers to monitor the quality of software in a

better way by ensuring that sufficient testing is performed.

In addition, redundant and unnecessary tests are avoided,

thus contributing to controlling the cost of testing; follow

the classification of test adequacy criteria. Program-based

test adequacy criteria can be subdivided into categories

for structural testing, fault-based testing and error-based

testing.

Structural Testing Adequacy Criteria

This category consists of test criteria that focus on

measuring the coverage of the test suite upon the

structural elements of the program. These criteria can be

further split between control-flow criteria and data-flow

criteria. They are mostly based on analysis of the flow

graph model of program structure.

Error-Based Testing Adequacy Criteria

This category of test criteria focuses on measuring

to what extent the error-prone points of a program. To

identify error-prone points, a domain analysis of a

program’s input space is necessary. Unfortunately, the

application of error-based testing is limited when the

complexity of the input space is high or when the input

space is non-numerical.

2.2 Issue Handling

Issue Tracking Systems and the Life-Cycle of an Issue

Software systems used to track defects as well as

enhancements or other types of issues, such as patches or

tasks. It is commonly used and they enable developers to

organise the issues of their projects. Issues that are

reported follow a specific life-cycle.

Defect Resolution Time

Defect resolution time is an indicator of the time

that is needed to resolve a defect. An arguably

straightforward measurement of the defect resolution

time is to measure the interval between the moment when

the defect was assigned to a developer and the moment it

was marked as resolved.

Throughput and Productivity

Throughput and productivity measures the level

of issues and thus comprise both defects and

enhancements. Both measures capture the number of

issues that are resolved in a certain time period, corrected

for respectively the size of the system and the number of

developers working on the system. Throughput measures

the total productivity of a team working on a system in

terms of issue resolution

Throughput = # Resolved Issues per Month /

KLOC

The Productivity is defined as follows:

Productivity = #resolved Issues per Month / # Developers

III. Previous Implementations

 Regression test selection (i.e., selecting a

subset of a given regression test suite) is a problem that

has been studied intensely over the last decade. However,

with the increasing popularity of developer tests as the

driver of the test process more fine-grained solutions are

in order. In this paper author investigate how method-

level changes in the base-code can serve as a reliable

indicator for identifying which tests need to be rerun.

Unit and integration tests can be invaluable

during software maintenance as they help to understand

pieces of code they help with quality assurance and they

build up confidence amongst developers. Unfortunately

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 3347

then, previous research has shown that unit tests do not

always co-evolve nicely with the production code, thus

leaving the software vulnerable. This paper presents

TestNForce, a tool that helps developers to identify the

unit tests that need to be altered and executed after a code

change, thereby reducing the effort needed to keep the

unit tests in sync with the changes to the production code.

Designing automated tests is a challenging task.

One important concern is how to design test fixtures, i.e.

code that initializes and configures the system under test

so that it is in an appropriate state for running particular

automated tests. Test designers may have to choose

between writing in-line fixture code for each test or

refactor fixture code so that it can be reused for other

tests. Deciding on which approach to use is a balancing act,

often trading off maintenance overhead with slow test

execution. Additionally over time, test code quality can

erode and test smells can develop such as the occurrence

of overly general fixtures obscure in-line code and dead

fields. That test smells related to fixture set-up occurs in

industrial projects. Author present a static analysis

technique to identify fixture related test smells.

Software metrics have been proposed as

instruments not only to guide individual developers in

their coding tasks but also to obtain high-level quality

indicators for entire software systems. Such system-level

indicators are intended to enable meaningful comparisons

among systems or to serve as triggers for a deeper

analysis. To resolve such limitations, a two stage rating

approach has been proposed where (i) measurement

values are compared to thresholds to summarize them

into risk profiles and (ii) risk profiles are mapped to

ratings.

IV. SYSTEM IMPLEMETNATION

The mapping of metrics to the sub-

characteristics is done, with the note that the adjusted SIG

(Software Improvement Group) quality model combines

duplication, unit size, unit complexity and unit

dependency into a maintainability rating. The aggregation

of the properties per sub-characteristic is performed by

obtaining the mean. For maintainability, this is done

separately in the adjusted maintainability model. The

aggregation of the sub-characteristics into a final, overall

rating for test code quality is done differently. The overall

assessment of test code quality requires that all three of

the sub-characteristics are of high quality.

Test Code Quality = Completeness + Effectiveness +

Maintainace

4.1 Properties

Code coverage

Code coverage is the most frequently used metric

for test code quality assessment and there exist many

tools for dynamic code coverage estimation. The fore

mentioned tools use a dynamic analysis approach to

estimate code coverage.

Assertions-McCabe Ratio

The Assertions-McCabe ratio metric indicates the

ratio between the number of the actual points of testing in

the test code and of the decision points in the production

code.

Assertion – McCabe Ratio = #assertion /

Cyclomatic Complexity

Cyclomatic Complexity Risk Categoery

1 to 10 Low

11 to 20 Moderate

21 to 50 High

>50 Very High

Table 1.1 McCabe’s Cyclomatic Table

Assertion Density

Assertion density aims at measuring the ability of

the test code to detect defects in the parts of the

production code that it covers.

Assertion Density = #Assertions / LOC

Directness

When each unit is tested individually by the test

code, a broken test that corresponds to a single unit

immediately pinpoints the defect. Directness measures the

extent to which the production code is covered directly.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 3348

4.2 The Evaluation Process of Software

A standard evaluation procedure has been defined

in which the quality model is applied to software product.

Fig. 1.2 Evaluation Procedure

4.3 Test Code Quality Model

Fig. 1.3 Quality Profile Variability

Here the X-axis represents the four risk

categories, and the Y-axis represents the percentage of

volume (lines of code) of each system per risk category.

4.4 Defect Resolution Speed Rating

The dependent variable 1 is the resolution time of

defects in a system, which is measured by calculating a

rating that reflects the defect resolution speed.

Fig. 1.4 Defect Resolution Time

EVALUATION RESULT:

Table 1.2 Issues Per System

Table 1.3 Results for Throughput

Table 1.4 Results for Productivity

The java application is accepted, because the

highest McCabe Ratio is achieved in both throughputs and

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 3349

productivity. Hence, that the java application has the best

quality software.

CONCLUSION

Developer testing is an important part of software

development. Automated tests enable early detection of

defects in software, and facilitate the comprehension of

the system. The three main aspects of test code quality

that we identified are: completeness, effectiveness and

maintainability. Completeness concerns the complete

coverage of the production code by the tests. Effectiveness

indicates the ability of the test code to detect defects and

locate their causes. Maintainability reflects the ability of

the test code to be adjusted to changes of the production

code, and the extent to which test code can serve as

documentation. Suitable metrics were chosen based on

literature and their applicability. Code coverage and

assertions-McCabe ratio are used to assess completeness.

Assertion density and directness are indicators of

effectiveness. Test code quality is mapped with issue

handling performance techniques. The test code quality is

measured by using these metrics.

FUTURE WORK

The current test code quality model is solely

based on source code measures. It might be interesting to

extend the model with historical information that would

bring additional insight as to the number of previous bugs

(defects that were not caught by the test code). To assess

the relation between test code quality and issue handling

performance we used three issue handling indicators.

However, other indicators reflect different aspects of issue

handling, e.g., the percentage of reopened issues could

provide an indication of issue resolution efficiency. Future

research that includes additional indicators will contribute

to the knowledge of which aspects of issue handling are

related to test code quality in particular.

References:

1. T. L. Alves and J. Visser. “Static estimation of test

coverage”. In Proceedings of the 2009 Ninth IEEE

International Working Conference on Source Code

Analysis and Manipulation, IEEE Computer Society,

2009.

2. T. L. Alves, C. Ypma, and J. Visser. “Deriving metric

thresholds from benchmark data”. In Proceedings of

the 2010 IEEE International Conference on Software

Maintenance, IEEE Computer Society, 2010.

3. J. An and J. Zhu. “Software reliability modeling with

integrated test coverage”. In Proceedings of the 2010

Fourth International Conference on Secure Software

Integration and Reliability Improvement, IEEE

Computer Society, 2010.

4. R. Baggen, J. Correia, K. Schill, and J. Visser.

“Standardized code quality benchmarking for

improving software maintainability”. Software Quality

Journal, 2011.

5. A. Bertolino. “Software testing research: Achievements,

challenges, dreams”. In 2007 Future of Software

Engineering, IEEE Computer Society, 2007.

6. D. Bijlsma. “Indicators of Issue Handling Efficiency and

their Relation to Software Maintainability”. Msc thesis,

University of Amsterdam, 2010.

7. B. Luijten. “The Influence of Software Maintainability

on Issue Handling”. Master’s thesis, Delft University of

Technology, 2009.

8. B. Luijten and J. Visser. “Faster defect resolution with

higher technical quality of software”. In 4th

International Workshop on Software Quality and

Maintainability (SQM 2010), 2010.

9. N. Nagappan, L. Williams, M. Vouk, and J. Osborne.

“Early estimation of software quality using in-process

testing metrics: a controlled case study”. SIGSOFT

Softw. Eng., May 2005.

10. F. Oppedijk. “Comparison of the SIG Maintainability

Model and the Maintainability Index”. Master’s thesis,

University of Amsterdam, 2008.

