
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 3321

LOAD BALANCING ALGORITHM IN TASK SCHEDULING PROCESS USING

CLOUD COMPUTING

*1Ms. Saranya G, *2Mr. Srinivasan J.

*1M.Phil Research Scholar, Department of Computer Science Adhiparasakthi College of Arts and Science,

Kalavai, TamilNadu, India

*2 Assistant Professor, Department of Computer Science, Adhiparasakthi College of Arts and Science, Kalavai,

TamilNadu, India

--***---
Abstract - Cloud computing is a term, which involves

virtualization, distributed computing, networking,

software and web services. A cloud consists of several

elements such as clients, datacenter and distributed

servers. It includes fault tolerance, high availability,

scalability, flexibility, reduced overhead for users,

reduced cost of ownership, on demand services etc.

Central to these issues lies the establishment of an

effective load balancing algorithm. The load can be CPU

load, memory capacity, delay or network load. Load

balancing is the process of distributing the load among

various nodes of a distributed system to improve both

resource utilization and job response time while also

avoiding a situation where some of the nodes are

heavily loaded while other nodes are idle or doing very

little work. Load balancing ensures that all the

processor in the system or every node in the network

does approximately the equal amount of work at any

instant of time. This technique can be sender initiated,

receiver initiated or symmetric type (combination of

sender initiated and receiver initiated types).Our

objective is to develop an effective load balancing

algorithm using to maximize or minimize different

performance parameters (throughput, latency for

example) for the clouds of different sizes (virtual

topology depending on the application requirement).

Key Words: Cloud Computing, load balancing, Honey bee

Foraging Algorithm, Active Clustering Data

communications and Transmission

I. INTRODUCTION

Cloud computing is an on demand service in
which shared resources, information, software and other
devices are provided according to the clients requirement
at specific time. It’s a term which is generally used in case

of Internet. The whole Internet can be viewed as a cloud.
Capital and operational costs can be cut using cloud
computing. Cloud vendors are based on automatic load
balancing services, which allowed entities to increase the
number of CPUs or memories for their resources to scale
with the increased demands.[2] This service is optional
and depends on the entity's business needs. Therefore
load balancers served two important needs, primarily to
promote availability of cloud resources and secondarily to
promote performance. According to the previous section
Cloud computing will use the dynamic algorithm, which
allows cloud entities to advertise their existence to
presence servers and also provides a means of
communication between interested parties. This solution
has been implemented into the IETF’s RFC3920 -
Extensible Messaging and Presence Protocol abbreviated
as XMPP[3].

Fig : A cloud is used in network diagrams to

depict the Internet
Load balancing in cloud computing systems is

really a challenge now. Always a distributed solution is
required. Because it is not always practically feasible or
cost efficient to maintain one or more idle services just as
to fulfill the required demands [5][7]. Jobs can’t be
assigned to appropriate servers and clients individually
for efficient load balancing as cloud is a very complex
structure and components are present throughout a wide
spread area. Here some uncertainty is attached while jobs

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 3322

are assigned [7]. Load balancing is a relatively new
technique that facilitates networks and resources by
providing a maximum throughput with minimum
response time. Dividing the traffic between servers, data
can be sent and received without major delay. Different
kinds of algorithms are available that helps traffic loaded
between available servers [2B]. A basic example of load
balancing in our daily life can be related to websites.
Without load balancing, users could experience delays,
timeouts and possible long system responses. Load
balancing solutions usually apply redundant servers which
help a better distribution of the communication traffic so
that the website availability is conclusively settled[5].
There are many different kinds of load balancing
algorithms available, which can be categorized mainly into
two groups. The following section will discuss these two
main categories of load balancing algorithms.

1.1. LOAD BALANCERS

The « Load Balancer » systems allow you to create an
infrastructure able to distribute the workload balancing it
between two or more Cloud Servers. You can therefore
shape your infrastructure to allow it to sustain activity
peaks, optimize the allocation of resources and ensure a
minimal response time. Using a load balancer is
recommended in all cases whether you require one or
more of the following:

• High traffic/request peaks
• Guarantee of service continuity’s
• Specialization of servers

To be able to balance the workload, you need at least

two or more Cloud Servers in the same private network
(VLAN). Aruba allows you to configure your load
balancers, and its connections, directly from the Control
Panel, with just a few clicks, easily and quickly[10][11]. It
is very easy to configure your load balancers for the main
protocols which are HTTP, HTTPS and TCP. You will then
need to select the algorithm for the routing of the
workload between Least Connection and Source.

Fig: Load Balancer

Cloud computing is a vast concept. Many of the
algorithms for load balancing in cloud computing have
been proposed. Some of those algorithms have been
overviewed in this thesis. The whole Internet can be
considered as a cloud of many connections less and
connection oriented services [7]. So the divisible load
scheduling theory for Wireless networks described in can
also be applied for clouds. The performance of various

algorithms have been studied and compared.

II. RELATED WORK

A dynamic load balancing algorithm assumes no
previous knowledge about job actions or the global state
of the system, i.e., load balancing decisions is exclusively
based on the existing or current status of the system [1]. In
the distributed one, the dynamic load balancing algorithm
is executed by all nodes present in the system and the task
of load balancing is shared among them. The interaction
among nodes to realize load balancing can take two forms:

1) Cooperative
2) Non-cooperative.

In the cooperative, the nodes work side by-side to attain a
common goal, for example, to advance the overall
response time,[2] etc. In the non-cooperative, every node
works independently in the direction of a goal local to it,
for example, to advance the response time of a local task
[4]. Dynamic load balancing algorithms having distributed
nature, frequently produce more messages than the non-
distributed ones because, each of the nodes in the system
is required to interact with every other node. The
advantage, of this is that even if one or more nodes in the
arrangement fail, it will not cause the total load balancing
process to stop; it instead would influence the system
performance to a little extent. In non-distributed type,
either one node or a group of nodes perform the task of
load balancing. Dynamic load balancing algorithms of non-
distributed nature can get two forms:

1) Centralized
 2) Semi-distributed.

In the centralized, the load balancing algorithm is

executed just by a single node in the total system: the
central node. This node is exclusively in charge for load
balancing of the whole system[2]. The other nodes interact
merely with the central node. However, in semi-
distributed form, nodes are partitioned into clusters,
where the load balancing in every cluster is of centralized
form. A central node is chosen in each cluster by suitable
election technique which takes care of load balancing
inside that cluster. Hence, the load balancing of the
complete system is done via the central nodes of each
cluster. Centralized dynamic load balancing takes less
messages to arrive at a decision, since the number of

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 3323

overall interactions in the system decreases drastically as
compared to the semi-distributed case. However,
centralized algorithms can create a bottleneck in the
system at the central node and also the load balancing
process is rendered hopeless once the central node
crashes[9][10]. Therefore, this algorithm is mainly suited
for networks with small size. Balancing technique.

2.1 EXISTING LOAD BALANCING ALGORITHMS

• Round Robin: In this algorithm, the processes are
divided between all processors. Each process is
handed over to the processor in a round robin
order. The process allotment order is maintained
in the vicinity independent of the allotments from
remote processors [6]. However the work load
distributions between processors are the same
but the job processing time for dissimilar
processes are not same. So by any point of time
some nodes may be greatly loaded and others
wait at leisure. This algorithm is frequently used
in web servers where http requests are of a like
nature and scattered likewise.

•
• Connection Mechanism: Load balancing

algorithm can as well be based on least
connection mechanism which is a component of
dynamic scheduling algorithm[3]. It requires
counting the number of connections for each
server dynamically to approximate the load. The
load balancer keeps track of the connection
number of each server. The number of link adds
to when a new connection is sent out to it, and
decreases the number when connection
terminates or timeout happens. A Task Scheduling
Algorithm Based on

• Load Balancing: This is discussed a two-level
task scheduling method based on load balancing
to convene dynamic requirements of users and
obtain high resource utilization[8]. It
accomplishes load balancing by first mapping
tasks to virtual machines and then virtual
machines to host resources by this means
improving the task response time, resource
consumption and overall performance of the
cloud computing environment.

• Randomized: Randomized algorithm is of type
static in nature. In this algorithm a process can be
handled by a particular node n with a probability
p. The process allocation order is preserved for
each processor independent of allotment from
remote processor[5]. This algorithm facilitates
well in case of processes that are equal loaded. On
the other hand, trouble arises when loads are of
different computational complexities.

Randomized algorithm does not keep up
deterministic approach. It facilitates well while
Round Robin algorithm generates overhead for
process queue[8].

2.2 SERVICES PROVIDED BY CLOUD COMPUTING

1. Software as a Service (SaaS)

In SaaS, the user uses different software
applications from different servers through the Internet.
The user uses the software as it is without any change and
do not need to make lots of changes or doesn’t require
integration to other systems. The provider does all the
upgrades and patching while keeping the infrastructure
running[6].

Fig : Software as a service (SaaS)

2. Platform as a Service (PaaS)

PaaS provides all the resources that are required
for building applications and services completely from the
Internet, without downloading or installing software. PaaS
services are software design, development, testing,
deployment, and hosting. Other services can be team
collaboration, database integration, web service
integration, data security, storage and versioning etc[6].

Fig: Platform As a Service (PaaS)

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 3324

3. Hardware as a Service (HaaS)

It is also known as Infrastructure as a Service
(IaaS). It offers the hardware as a service to an
organization so that it can put anything into the hardware
according to its will[5].

HaaS allows the user to "rent" resources as

• Server space
• Network equipment
• Memory
• CPU cycles
• Storage space

Fig : Hardware as a Service (HaaS)

III. SYSTEM IMPLEMETNATION

3.1 LOAD BALANCING

It is a process of reassigning the total load to the
individual nodes of the collective system to make resource
utilization effective and to improve the response time of
the job, simultaneously removing a condition in which
some of the nodes are over loaded while some others are
under loaded. A load balancing algorithm which is
dynamic in nature does not consider the previous state or
behavior of the system, that is, it depends on the present
behavior of the system. The important things to consider
while developing such algorithm are : estimation of load,
comparison of load, stability of different system,
performance of system, interaction between the nodes,
nature of work to be transferred, selecting of nodes and
many other ones. This load considered can be in terms of
CPU load, amount of memory used, delay or Network load.

Static load balancing: This is the basic method of load
balancing. In this method the performance of the workers
is determined at the commencement of execution. Then
depending upon their performance the work load is
distributed in the start. The workers compute their
assigned work and submit their result to the master.

Dynamic load balancing: Dynamic load balancing
determines the distribution of workload at run-time. The
master assigns new task to the worker depending on the
recent information collected. Since the workload
distribution is done during runtime, it may give better
performance. But the performance gained is at the cost of
overhead associated with communication. So, the
overhead associated should be in reasonable limit to
achieve better performance

Network load balancing: Assume that you are running a
website on Apache and you are starting to get a high
enough level of traffic and load that you need to add
additional Apache instances to help respond to this load.
You can add additional Google Compute Engine instances
and configure load balancing to spread the load between
these instances. In this situation, you would serve the
same content from each of the instances. As your site
becomes more popular, you would continue increasing the
number of instances that are available to respond to
requests.

HTTP(S) load balancing: The network load balancing
scenario above scales well for a single region, but to
extend the service across regions, you would need to
employ unwieldy and sometimes problematic solutions.
By using HTTP(S) load balancing in this situation, you can
use a global IP address that is a special IP that can
intelligently route users based on proximity. You can
increase performance and system reliability for a global
user base by defining a simple topology.

Server Load Balancing: The Thunder Series and AX
Series advanced server load balancing and flexible health
monitoring capabilities provide application availability
and reliability. The core of A10 ADC platform covers a
wide range of options for load balancing methods and
health checks. Comprehensive IPv4 and IPv6 support
across all models maximizes options for current and
future deployment.

Fig : Interaction among components of a dynamic load
balancing algorithm

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 3325

IV. DISTRIBUTED LOAD BALANCING FOR THE CLOUDS

In complex and large systems, there is a
tremendous need for load balancing. For simplifying load
balancing globally (e.g. in a cloud), one thing which can be
done is, employing techniques would act at the
components of the clouds in such a way that the load of
the whole cloud is balanced. For this purpose, we are
discussing three types of solutions which can be applied to
a distributed system: honeybee foraging algorithm, a
biased random sampling on a random walk procedure and
Active Clustering.

Fig : deployment scenario with IP load balancers
serving both directions for incoming and outgoing

requests in a cluster

4.1 HONEY BEE FORAGING ALGORITHM

This algorithm is derived from the behavior of
honey bees for finding and reaping food. There is a class of
bees called the forager bees which forage for food sources,
upon finding one, they come back to the beehive to
advertise this using a dance called waggle dance. The
display of this dance, gives the idea of the quality or
quantity of food and also its distance from the beehive.
Scout bees then follow the foragers to the location of food
and then began to reap it. They then return to the beehive
and do a waggle dance, which gives an idea of how much
food is left and hence results in more exploitation or
abandonment of the food source.

The standard honey Bees Algorithm

 1 for i=1,…,ns

i. scout[i]=Initialise_scout(

ii. lower_patch[i]=Initialise_flower_patch(scout[i])

 2 do until stopping_condition=TRUE

 i Recruitment()

iii. for i =1,…,nb

• flower_patch[i]=Local_search(flower_patc
h[i])

• flower_patch[i]=Site_abandonment(flowe
r_patch[i])

• flower_patch[i]=Neighbourhood_shrinkin
g(flower_patch[i])

iv. for i = nb,…,ns

• flower_patch[i]=Global_search(flower_pat
ch[i])}

As mentioned, the Bees Algorithm is an
optimization algorithm inspired by the natural foraging
behavior of honey bees to find the optimal solution pseudo
code for the algorithm in its simplest form. The algorithm
requires a number of parameters to be set, namely:
number of scout bees (n), number of sites selected out of n
visited sites (m), number of best sites out of m selected
sites (e), number of bees recruited for best e sites (nep),
number of bees recruited for the other (m-e) selected sites
(nsp), initial size of patches (ngh) which includes site and
its neighborhood and stopping criterion. The algorithm
starts with the n scout bees being placed randomly in the
search space. The fatnesses of the sites visited by the scout
bees are evaluated in step 2.

v. Initialize population with random solutions.

vi. Evaluate fitness of the population.

vii. While (stopping criterion not met) //Forming
new population.

viii. Select sites for neighborhood search.

ix. Recruit bees for selected sites (more bees for best
e sites) and evaluate fit nesses.

x. Select the fittest bee from each patch.

xi. Assign remaining bees to search randomly and
evaluate their fatnesses’.

xii. End While.

In step 4, bees that have the highest fit nesses are
chosen as “selected bees” and sites visited by them are
chosen for neighborhood search. Then, in steps 5 and 6,
the algorithm conducts searches in the neighborhood of
the selected sites, assigning more bees to search near to
the best e sites.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 3326

Table: Comparison Table of Load Balancing
Techniques

4.2 Primary Scheduling Algorithm

There are M equal-sized independent tasks to be
scheduled under the bandwidth-bounded cloud-
computing environment. In order to minimize the total
time (T) needed to finish all tasks, the scheduling node P0
needs to decide how many tasks should be specifically
allocated and transferred to each VM. In order to achieve
the optimized task allocation, we formulate a nonlinear
programming model for the task-scheduling problem with
the following constraints:

1. Ensures that the total number of tasks executed
by all nodes is equal to M, where xi denotes the number of
tasks allocated to node Pi.

2. Ensures that the number of tasks allocated to
each of VMs is less than or equal to M.

 3. Ensures that each VM node has computing
power and bandwidth greater than 0.

4. Ensures that the execution of algorithm will not
be misled and will not violate the real situation when task
execution time wi is less than the task transmission time
1/bi. In such case, there will certainly exist the state that
the previous task is already finished; however, the next
task is yet to come. When that happens, VM could do
nothing but wait. As such waiting unavoidably exists, the
way to handle the waiting in the model is to append the
time difference to execution time. In other words, as the
execution waits until transmission ends, the scheduling
strategy regards execution time wi the same as
transmission time 1/bi. The preceding equation is the case
when wi is less than 1/ bi; The algorithm is deployed on
Broker and works out the optimized task allocation
scheme on the basis of information of VM (computing
power and bandwidth) and submits the optimized scheme
to the Datacenter, so that the Datacenter allocates tasks to
VMs according to the optimized task allocation scheme.

4.3 Modified Scheduling Algorithm

In BATS, if a set of tasks that represent a divisible
load application is submitted to the Datacenter, then
obtain computing power and bandwidth of VMs owned by
Broker, obtain information about tasks, build a nonlinear
programming model, and solve the model and obtain the
optimized task allocation scheme A that determines
proper number of tasks assigned to each VM. In each
iteration, one VM is bound the proper number of tasks.
Then, the Broker sets bandwidth used in task transmission
and transfers task on the basis of the bandwidth. T.

i. Procedure BATS ()//scheduling algorithm of
Broker

ii. If (Task_Submitted())//if there is a set of tasks
submitted

iii. GetVmInfo()//get computing power and
bandwidth of VMs owned by Broker

iv. GetTaskInfo()//get information about tasks,
including total number and size

v. Build_Model(model)//build a nonlinear
programming model A=Solve(model)//solve the
model and obtain the optimized task allocation
scheme

vi. A End If

vii. While (Exist_Idle())//when there is a idle VM in
virtual machine list vmlist

viii. vmi=GetNextIdle(vmlist)//get next idle virtual
machine vmi from vmlist

ix. Ti=GetTaskNum(A)//get the number of tasks, Ti,
allocated to vmi in A

x. Bind(A, vmi)//bind Ti tasks to vmi
SetBandwidth(vmi, b′i)// set bandwidth
used in task transmission: b′i=xi/(T-wi)

xi. End while

xii. Submit ()//concurrently send tasks with new
bandwidth

xiii. End if

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 3327

RESULT AND EVAILATION RESULT

Here we consider the following two cases. In the
first case the measurement and reporting time is plotted
against the number of slaves corresponding to a master,
where the link speed b is varied and measurement speed a
is fixed. In the second case, the measurement and
reporting time is plotted against the number of slaves
corresponding to master, where link speed b is fixed and
measurement speed a is varied. Load balancer is a key
element in resource provisioning for high available cloud
solutions, and yet its performance depends on the traffic
offered load. We develop a discrete event simulation to
evaluate the performance with respect to the different
load points. The performance metrics were the average
waiting time inside the balance as well as the number of
tasks. The performance study includes evaluating the
chance of immediate serving or rejecting incoming tasks.

The users execute their processes on their hosts,
and the random arrival of newly created processes can
make some systems overloaded and some systems under
loaded or idle. To overcome this problem at runtime, load
balancing is used. Load Balancing is used in distributed
memory multiprocessor to balance the workload among
workstations automatically at execution time. Ideally we
always wish all processors to be executing continuously
on the tasks to give a superior performance.

The case when the inverse measuring speed a is
varied from 1 to 2 at an interval of 0.3 and the inverse link
speed b is fixed to be 0.2. The result confirms that the
measurement time approaches b1Tcm, which in this case
is 0.2, as N approaches infinity.

Fig : Measurement/report time versus number of
slaves corresponding to master and variable inverse

link speed b for single level tree network with master
and sequential reporting time.

The measurement/report time is plotted against
the number of slaves corresponding to a master for the
simultaneous measurement start simultaneous reporting
termination case. The value the inverse link speed b is
varied from 0 to 1 at an interval of 0.3 while the inverse
measuring speed a is fixed to be 1.5. In this case the
minimum finish time decreases as the number of slaves

under a master in the network is increased. This assumes
that the communication speed is fast enough to distribute
the load to all the slaves under a master.

Fig : Measurement/report time versus number of
slaves under a master and variable inverse link speed

b for single level tree network with master

Fig : Measurement/report time versus number of
slaves under a master and variable inverse measuring

speed a for single level tree network with master

The comparison between the
measurement/reporting time of both the approaches for
the same no. of slave computers corresponding to the
same master. Here the inverse link speed b is taken as 1
and the inverse measurement speed a is 0.5 for both the
cases. Number of master computers is taken to be constant
equal to 50. The plot shows that the
measurement/reporting time is smaller in case of
simultaneous reporting as compared to sequential
reporting. It is because in case of sequential reporting,
some of the slaves receive almost zero loads from its
master. Number of effective slaves in this case is less as
compared to the simultaneous reporting case. Hence with
increase in no. of slaves with respect to a master, the
finishing time remains almost same in case of sequential
reporting whereas in case of simultaneous reporting, the
finishing time decreases for the increase in no. of slaves
corresponding to a single master. The graph shows that
the finishing time can be improved by increasing the
number of slaves under a master computer in a cloud only
to some extent before saturation in case of sequential

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 3328

measurement and sequential reporting strategy. But
finishing time can be decreased significantly in case of
simultaneous measurement start and simultaneous
reporting termination by increasing the no. of slaves
under a single master computer.

CONCLUSION

 In this paper, we presented in till now we have
discussed on basic concepts of Cloud Computing and Load
balancing and studied some existing load balancing
algorithms, which can be applied to clouds. In addition to
that, the closed-form solutions for minimum measurement
and reporting time for single level tree networks with
different load balancing strategies were also studied. The
performance of these strategies with respect to the timing
and the effect of link and measurement speed were
studied. A comparison is also made between different
strategies.

FUTURE WORK

Cloud Computing is a vast concept and load
balancing plays a very important role in case of Clouds.
There is a huge scope of improvement in this area. We have
discussed only two divisible load scheduling algorithms that
can be applied to clouds, but there are still other approaches
that can be applied to balance the load in clouds. The
performance of the given algorithms can also be increased
by varying different parameters.

REFERENCES:

[1]. Bhasker Prasad Rimal, Eummi Choi, Lan Lump (2009) “A
Taxonomy and Survey of Cloud Computing System”, 5th
International Joint Conference on INC, IMS and IDC, IEEE
Explore 2527Aug 2009, pp. 44-51

[2]. Bhathiya, Wickremasinghe.(2010)”Cloud Analyst: A
Cloud Sim-based Visual Modeller for Analysing Cloud
Computing Environments and Applications”

[3] C.H.Hsu and J.W.Liu(2010) "Dynamic Load Balancing
Algorithms inHomogeneous Distributed System," Proceedings
of The 6thInternational Conference on Distributed
Computing Systems, , pp. 216-223.

[4] Calheiros Rodrigo N., Rajiv Ranjan, César A. F. De Rose,
Rajkumar Buyya (2009): “CloudSim: A Novel Framework for
Modeling and Simulation of Cloud Computing” Infrastructures
and Services CoRR abs/0903.2525: (2009)

[5] Carnegie Mellon, Grace Lewis(2010) “Basics About Cloud
Computing” Software Engineering Institute September 2011

[6] Cary Landis, Dan Blacharski, “Cloud Computing Made
Easy”, Version 0.3

[7] “CloudSim: A Framework for Modeling and Simulation of
Cloud Computing Infrastructures and Services, The Cloud
Computing and Distributed Systems” (CLOUDS) Laboratory,
University of Melbourne, (2011) available from:
http://www.cloudbus.org/cloudsim/

[8] G. Khanna, K. Beaty, G. Kar, and A. Kochut,(2006)
“Application Performance Management in Virtualized Server
Environm,” in Network Operationsand Management
Symposium, (2006). NOMS (2006). 10th IEEE/IFIP, pp 373–
381.

[9] Jaspreet kaur (2012),”Comparison of load balancing
algorithms in a Cloud” International Journal of Engineering
Research and Applications(IJERA) ISSN: 2248-9622
www.ijera.comVol. 2, Issue 3,pp.1169-1173

[10] Java software version 7 downloaded from:
http://java.com/en/download/index.jsp, August 2012. [11]
Livny, M.; Melman, M. (2011): Load Balancing in
Homogeneous Broadcast.

