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Abstract – The mathematical model introduced in this 
paper is based on a new concept of intrinsic mode. This model 
could be applied to a physical structure which is the tapered 
wave guide used in integrated optics communication; also 
known as the tapered optical coupler. We shall show how one 
can introduce an efficient computer program for the 
determination of the steepest descent path contour, in order  
to be able to evaluate numerically an Intrinsic Field Integral 
applied to our structure. Consequently, we shall show that 
computer results agree, to a certain extent, with the theory of 
functions of complex variables.   
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1.INTRODUCTION 
 
Let us reconsider very briefly the main structure of the 
Tapered wave guide as encountered in Integrated Optics 
applications 1. Fig 1 shows a film of range dependent 
thickness and uniform refractive index n1, which is 
sandwiched between an air-cover of uniform refractive 
index n3 (air) and another infinite medium of uniform 
refractive index n2. 
At a given observation point characterised by a local 
thickness T and an angular angle X, corresponds one and only 
one saddle point q (which will be defined further). In order 
to analyse the electromagnetic field distribution inside the 
guide 2 3, and also to be able  to predict the performances 
of our structure as encountered in integrated optics 
communication, one has introduced the concept of an 
Intrinsic Integral I(X,q)  as follows : 
 

     d S(X, k j(X, I

c

q )expA)                                 (1) 

The contour of integration (C) can be any arbitrary contour as 
depicted in fig. 2 and ‘A’ is a constant depending on the wedge 
angle ‘a’.  
Physically I(X,q) describes a local mode generated by 
integrations over any angular plane waves spectrum. Such a 
source-free mode (labelled q) is defined at an observation 
point (X,) and propagates smoothly along the tapered wave 
guide with a wave number k. The imaginary number j is such 
as:         
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
j2 = -1.  The angle  remains the incident angle of plane wave 
with respect to bottom boundary of the tapered wave guide.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
The phase function S(X,) could be any phase among the four 
species of rays involved in the propagation process; they are 

fully developed in 3. In this case, the constructed plane 

wave spectrum maintains itself self-consistently with no 

effect from the source. In order to be able to evaluate 

systematically (eq.1), using the saddle point method, one has 

to know exactly the steepest descent path (SDP) contour, 

because 4-7 : 

     d S(X, k j(X, I

SDP

q )expA)                               (2)  

Fig -2: (a) Arbitrary contour of integration C in the 
complex -plane. (b) Contour C decomposed into 
contours C' and C''. 

         

Fig -1: Configuration of the Tapered Waveguide. 
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We remind that integrating along the contour (C) is 
synonymous to integrating along the (SDP) contour at q 
(observation point). As long as the observation point is 
located far from singularity c . But, once one approaches 
singularity, integration along (BC) need to be taken into 
consideration, according to some properties of special 
asymptotic complex function in cited references above.  

 

2. CONTOUR CONSTRUCTION OF THE STEEPEST 
DESCENT PATH   
 

The asymptotic evaluation of the Integral in (eq. 2) by the 
steepest descent path method requires the exact location of 
saddle point q at any arbitrary observation point (X,) along 
the tapered wave guide, as well as the locus of the steepest 
descent path (SDP) contour. At a given local thickness T, in 
order to investigate the saddle point q involved in I(X,q); it 
is necessary to find the zero's of the derivative of the phase 
S(X,)  in (eq. 2), that is to say :   
                                                                                                                

 0
)






d

dS(X,
                                                              (3)                                                                      

 
Because the function S(X,) is simply the -dependent 
part of the phase in (eq. 2). The equation obtained, 
allows us to investigate the saddle point q just by a 
simple numerical method such as the Newton-
Raphson's. Once the saddle point q has been located, 
the burden of the integration in (eq. 2) lies in finding 
the steepest descent path (SDP) contour. For a 
specified observation point (X,), as well as for a given 
mode number q, the steepest descent path contour can 
be constructed analytically via the following equation: 
 

Im [j k S (X, )]  Im [j k S (X,q) ]                          (4) 
 
Along the steepest descent path contour, the major 

contribution in (eq. 2) is dominated by the angles  in the 
vicinity of the saddle point q. The computer program which 
has been developed to implement the (SDP) contour; consists 
of mainly, in determining first q at each observation point 
(X,) by using the Newton-Raphson numerical method and 
then, having (eq. 4) satisfied. The appendix gives a brief 
explanation about the computer program developed to 
implement ''SADDLE POINT-SDP''. In addition, one has to 
declare very clearly in the computer program, the principal 
branch corresponding to different Riemann-sheet of all 
complex square roots involved in the calculation of (eq. 2). 
Because of the multiple-valued function () indirectly 
involved in (eq. 2), through S(X,). We recall that () is the 
phase of the Fresnel reflection coefficient at the bottom and 
top boundaries of fig. 1: 
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3. COMPUTATIONAL RESULTS AND CONCLUSION 

Figs. 3 depict the computational results of the steepest 
descent path contour for three different cases related to the 
position of the saddle point q with respect to the branch 
point c. We recall the singularity c, defined as follows: 

  

)
n

n
arccos(

1

2
c                                                 (eq. 6) 

Bearing in mind that the singularity c represents only the 
root of () and it also represents physically, the critical angle 
of the structure given in fig. 1.  
Fig. 3a corresponds to the (SDP) contour in the guided wave 
region, that is to say in region where qc. One notices that 
the (SDP) contour crosses the real axis at an angle 4; which 
agrees with the theory of function of complex variables in 
region free of singularity4 5. In this region, the real saddle 
point q denoted by ‘x’ sign in figure is such that q c. In this 
case, the major contribution of integral in (eq. 2) is 
dominated by the portion of (SDP) near the saddle point q. 
The branch cut contour starting from the branch point c, 
denoted by the ‘*’ sign in figure, does not contribute to the 
integration in (eq. 2); for in this region, the (SDP) contour 
does not cross the branch point c  yet. 
Fig. 3b represents physically the (SDP) contour near the 
transition region, where qc. The contour tends to surround 
the branch point c. In this case, saddle point and branch 
point are confluents and further move of q towards c will 
make the (SDP) contour cross c. We then physically enter a 
new region known as leaky wave region. In this case, 
calculations of   (eq. 2) start becoming difficult, because of the 
contributions to the (SDP) contour of the branch cut (BC) 
contour [3]. 
Fig. 3c corresponds physically to the (SDP) contour in the 
leaky wave region which locates a saddle point q beyond the 
branch point c, that is to say Real(q)c. This region has a 
saddle point with a complex imaginary part. It is this very 
imaginary part that is responsible for the decaying of waves 
as they propagate along the tapered wave guide 3. It is also 
noticed from figure, that the (SDP) contour crosses the line 
Real()c and it is continuous. Beside, the branch cut 
contour is asymptotic to the lower part of the (SDP) contour. 
These are also standards properties of complex variables 
functions 4 5, in region where Real(q)c.  
The integration of  (eq. 2) is theoretically supposed to be 
accomplished by the (SDP) method as well as the branch cut 
contribution. However, in practice, it is difficult to separate 
the two contributions and numerical problems arise. This is a 
major limitation of the saddle point method in region beyond 
singularity. In addition, in such a region, it is computationally  
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very cumbersome to pick-up the (SDP) contour. For at 
vicinity of saddle point q, the steepest descent path (SDP)  
and the steepest ascent path (SAP) contours become very 
hard to distinguish.  
The above complications may render the asymptotic 
evaluation of I(X,q) impractical; consequently, one may 
require direct numerical method of evaluation for (eq. 2). 

Bearing in mind that physically all incident rays in fig. 1 have 
an incident angle   less than the critical angle c which itself 
is less than 2. We remind that physically the contribution  
of rays having an incident angle   higher than 2 have no 
significant mathematical contribution in (eq. 2).  
As a matter of facts and besides all difficulties already 
mentioned, one has computed (eq. 2) using the (SDP) method 
for the three lowest modes 3. Those results are compared 
with the field distributions of (eq. 2) calculated along the real 
axis (02). Very good agreements were obtained 
between the fields distributions calculated separately via 
different contour of integration 2. In this way, restrictions 
mentioned in this paper will be overcome by suggesting 
another simpler contour of integration, which is the real axis, 
more precisely, the interval 02 . 
In conclusion one can say that the computer plots of figs. 3 
have all been carried out for a mode number q1 propagating 
along the structure of fig. 1 and for Xa ;  which corresponds 
to an observation point (X,) situated on top interface of the 
tapered wave guide. For others X, as well as for higher modes, 
the contours obtained (though not represented) are 
qualitatively similar to the plots of figs. 3 but different 
quantitatively. 

 

IV. APPENDIX  

This appendix gives the brief development of the 
implementation of ''SADDLE POINT METHOD'' to compute 
the steepest descent path (SDP) contour of any phase 
function S(X,) of (eq. 2). The procedure locates first the 
saddle point q for a certain observation point (X,), by using 
the Newton Raphson numerical algorithm. q could be real or 
imaginary, depending physically on which region with 
respect to the critical angle c one is dealing with. 

The computation of the (SDP) contour is via (eq. 4). It 
implements the ''FALSE POSITION METHOD'' algorithm on 
each complex variable , defined with respect to the origin 
(0,0). Initially, one fixes ainc (abitrary initial value equals to 
the wedge angle a for instance) positive so as to depict the 
upper part of the (SDP) contour, and chooses two arbitrary 
points 01 and 02 as initial guesses, whose values are very 
close to q's.  Iterating 01 and 02 so as to have (eq. 4) 

satisfied, to a certain approximation (less than 810 ), leads to 

a root of (eq. 4). Incrementing ainc and starting again from 01 
and 02 close to   (previous root), we repeat the procedure 
until the upper part of the (SDP) contour is completed. That is 
to say when the total number of points   is equal to N, where 
N is an arbitrary specified number of points in each part of 
the (SDP) contour.  For computation of the lower part of the 
(SDP) contour, we repeat the same procedure, bearing in 
mind that ainc is negative. Of course, the running time will 
automatically depend on the number of points N making up 
the (SDP) contour. For a quite small number of points N; one 
can get away very efficiently with a good approximation of 
integral I(X,q). 

As a matter of fact, only few points near saddle points q 
contribute significantly to the asymptotic evaluation of any 

Integral I(X,q) by the saddle point technique. The drawback of 
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Fig -3: Plot of computed steepest descent path (SDP) 
and branch cut (BC) contours, for calculations of the 
Intrinsic Field Integral, in the complex -plane. Three 
different positions of observation point are 
considered; (a)  Saddle point q located in the guided 
wave region; (b) Saddle point q located near 
transition region; (c) Saddle point q located in the 
leaky wave region. (x denotes the saddle point q; * 
denotes the branch point c ). n12 , n21.76 , n31 ,      
a 0.027 rad. 
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the algorithm, however, is that it works perfectly well in regions 

where qc (guided wave region); but beyond any singularity 

where Real(q)c (leaky wave region), it becomes very difficult 
to compute the (SDP) contour. For past the transition region, the 
(SDP) contour tends to surround the singularity. As one can see it 
in figs. 3. Consequently, the computer program depicts points on 
the steepest ascent path instead of points on the steepest descent 
path. For this reason, one must resort to another method of 

evaluation of Integral I(X,q) in region past the singularity. This 
was dealt with in some papers as in [8] and it will be done in 
our others works in near future. 
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