
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 2837

Decision based Meta Scheduler in Grid

Savita Khurana1, Dr. Tanupreet Singh2

1Assistant Professor, Dept. of Information Technology, JMIT,Radaur,Haryana,India
2Professor, Dept. of Computer Science & Engineering, ACET, Amritsar,Punjab,India

---***---

Abstract - Grid computing allows resource sharing
between several entities [9], but to select the
appropriate resource to run a specific job remains one
of its major challenges. We try to solve this problem
using Meta scheduler. It accepts the user request and
identifies the efficient resource from the available list
of resources in different scheduler. Meta-scheduler
keeps the information about all resources. When the
job is arrived for execution, meta-scheduler will
arrange the jobs in a queue for scheduling in the local
scheduler. Meta-scheduler will collect the current data
available status from users and resource providers at
periodically interval. The meta-scheduler schedule the
jobs to different sites, instead of sending the jobs to
single site to achieve the better resource utilization
and load balancing. A collective effort of a local and
meta-scheduler, a better scheduling decision can be
taken.
Key Words: Grid, Meta Scheduler, scheduling, Makespan

1. INTRODUCTION
The sharing and co-ordination of heterogeneous and
geographically distributed resources has become the
fundamental capabilities of Grid Computing [9]. To perform
application execution in the Grid, proper scheduling of Grid
resources is necessary to achieve the best utilization of
resources. To achieve this goal in an effective manner, An
efficient Grid scheduling system is an essential part of the
Grid. Grid Resource Scheduling is defined as the process of
making appropriate scheduling decisions involving
resources over same or different domains. The grid
scheduling system is responsible to select appropriate
resources in a grid for user jobs. The grid scheduling
problem is multi-objective [10] in nature. Several
performance and optimization metrics [11] can be
considered to evaluate the performance of a given schedule
and performance of overall grid system. Different criteria
can be used for evaluating the efficiency of scheduling
algorithms but the most important criteria are makespan
and flowtime. Makespan is the time when a system
successfully completed the task and flowtime is the sum of
completion times of the entire task. A Grid scheduler (or
broker) takes resource selection decisions but it has no
control over the local resources, the resources are
distributed, and information about the systems is not
frequently updated. Here, schedulers are performing the

tasks of job management i.e. allocating resources needed by
particular job, divided the large job in to smaller jobs so that
they can execute in parallel manner in parallel processing
environment. Scheduler also responsible for management of
data and service-level management capabilities. Meta
schedulers in grid are different from local schedulers
because a local scheduler only manages and control a single
site or cluster and usually owns the resource. In the
literature, a lot of scheduling algorithms were proposed each
one has particular features and capabilities.

2. RELATED WORK
Thomas A. Henzinger et al. [1] proposed abstraction
refinement approach. The static scheduling problem often
arises as a fundamental problem in real-time systems and
grid computing. They considered the problem of statically
scheduling a large job expressed as a task graph on a large
number of computing nodes, such as a data center. Proposed
paper use abstraction refinement techniques to solve the
large-scale static scheduling problem, abstraction
refinement a technique commonly used in formal
verification to efficiently solve computationally hard
problems. Abstraction refinement based schedulers firstly
solve the scheduling problem with abstract representations
of the task and resources. Abstract representations are often
small and the scheduling of resources can be done rapidly. If
the obtained schedule does not meet specified quality
conditions i.e. data center utilization or makespan. Then the
scheduler refines the job and data center abstractions and,
again solves the scheduling problem. Different schedulers on
abstraction refinement technique was developed and
implemented. These schedulers are used to schedule the task
from different computing domains on simulated data centers
with different topologies. After that a comparison is
performed which compare the speed of scheduling and the
quality of the produced schedules with their abstraction
refinement schedulers against a baseline scheduler that
didn’t use any abstraction. At last it was concluded that
abstraction refinement based scheduler give a considerable
speed-up compared to traditional static scheduling, at a low
cost. Proposed approach implements their static schedulers
in system that they deployed on Amazon EC2 and
comparison is done with Hadoop dynamic scheduler. Paper
results indicated that there is great probability for static
scheduling techniques. An important assumption behind
static scheduling techniques is that the characteristics of the
jobs like job duration, object sizes are known before job
submission. At the same time, for certain classes of jobs, the
duration of the job cannot be estimated before execution. For

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 2838

example, computing the duration of software testing jobs is
not predictable. Such jobs cannot directly use this technique,
and thus call for dynamic scheduling and load balancing.
Asef Al-Khateeb et al.[2] proposed Meta Scheduling in grid
environment. Meta-scheduling systems play a crucial role in
scheduling jobs that are submitted for processing and
require special attention because large numbers of jobs are
being executed on small number of resources. The primary
problem of meta-scheduling is selecting the best resources to
execute the tasks while achieving the following objectives:
reducing the mean job turnaround time, load balancing for
better resource utilization, and considering job priorities.
They proposed an enhanced meta-scheduling system, called
Job Nature Meta-scheduling (JNMgrid). JNMgrid consists of
three components: (1) Job Analyzer, its function is to
determine the types of jobs in specific ratios; (2) Job
Matcher, it is used for matching the jobs with the
appropriate resources and (3) Job Batch Allocator, its
function is to determine the best number of jobs for
execution. The performance of JNMgrid was compared with
similar existing systems i.e. Queue Length, File Access Cost,
and File Access Cost plus Job Queue Access Cost. The
simulation results demonstrated that JNMgrid outperforms
these systems and can thus be deployed in any grid
middleware to improve sharing of limited exclusive
resources among grid users. JNMgrid is responsible for
categorizing the received jobs as Computational Jobs (CJ)
and Data intensive jobs(DIJs). The CJ are those that require
more execution time than data access time, which represents
the time that is required for input and output (I/O)
operations. DIJs are the jobs that demand more access time
than execution time. Also, JNMgrid outperforms other
similar meta-scheduling systems and produce better results
for all three underlying objectives simultaneously. Therefore,
JNMgrid could be deployed in real grid middleware, such as
Globus. Moreover, JNMgrid includes a feature that was not
present in existing systems: it considers users’ priorities in
the scheduling decisions to support SLAs in real grid
systems. Hence, the proposed system can provide better
resource sharing and resource optimization in a distributed
grid environment. There is no doubt, this proposed meta-
scheduler achieves the objectives like reducing job
turnaround time, ensuring site load balance and considering
user’s priorities. But this meta-scheduler is not able to
address other objectives like less execution time and more
usage count which are also equally important objectives.
Salman Meraji et al., [3] have proposed a new algorithm
which is called best-min algorithm in order to conquer the
disadvantage of min-min algorithm that is schedule
produced by min-min is not efficient in term of load
balancing and max-min's relative time to finish assigning
tasks is very high. It is a two stage algorithm. The best-min
algorithm uses min-min heuristic to use makespan in first
stage and reschedule the tasks in the second stage to reduce
makespan time. Algorithm use best -min considered all the
resources in grid environment and this is lead to maximize
the utilization of resource in grid.

Sadegh Nejatzadeh et al.[4] presents a new scheduling
algorithm for static mapping to achieve better performance.
Task Scheduling is a vital design issue of distributed
computing. A computational grid is a highly distributed
environment. The goal of grid scheduling is to achieve high
throughput and to allocate appropriate computing resources
to applications. The Complexity of job scheduling[6] rapidly
increases with the size of the grid and becomes challenge to
solve it. Different algorithms have been proposed so far and
some of them are based on heuristic techniques to provide
an optimal or near optimal solution for large grids. The
proposed heuristic approach execution time uses a simple
mapping function which tries to show the machine state
together. A new algorithm is proposed to schedule task using
meta-scheduler in grid computing system. The proposes
heuristics tries to consider the execution time and resource
state simultaneously by a mapping function. However, the
results of proposed method is not better than Min-Min
method in terms of makespan, but its results are comparable
with its running time that is three times faster than Min-Min.
Javad Akbari Torkestani[5] proposed a fully distributed,
learning automata–based job scheduling algorithm is
proposed for grid environments. Job scheduling is one of the
major task in the design of grid environments. The
performance of the grid system degrades if there is not any
method to efficiently schedule the user jobs. The proposed
method is composed of two types of functions: in the first, a
function is run at the grid nodes and second function is run
at the schedulers. The proposed algorithms synchronize the
performance of the schedulers by the learning automata. The
proposed algorithm selects their actions using the pseudo-
random number generators with same data set. In this
method, the grid computational capacity is allocated to each
scheduler that is relative to its workload. Several simulation
experiments were executed under different grid scenarios to
show the superiority of the proposed method. The obtained
results show that the proposed algorithm performance is
good in terms of makespan, flow time, and load balancing.

3. DECISION BASED META SCHEDULER
FRAMEWORK

We have implemented a decision based Meta scheduling
framework based on the reliability. It accepts the user
request and finds out the trust full nodes from the available
resources in different scheduler. From the list of reliable
node it selects the best node to execute the task.
Components:
The proposed framework has three major components:-

1. Local Site
2. Local scheduler
3. Meta Scheduler

Local Site:- as we know grid is a distributed system having
resources widespread distributed and belongs to different
administrative domain. Nodes present at particular domain
are known as local site.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 2839

3.1 System Architecture
The architecture of Meta Scheduling framework is shown in
Fig. 1. The Architecture consists of sites at different locations
which are connected by local scheduler. The local schedulers
are further connected by Meta-Scheduler.

Fig-1 Architecture of Meta Scheduling Framework

3.1.1 Local Scheduler:
Local level scheduler is collection of Computing Elements
(CE) and Storage Elements (SE). This collection is visualized
as cluster of resources [1]. Local scheduler only manages a
single site or cluster and usually owns the resource but it has
complete control of all the resources on that cluster.
Local scheduler in proposed approach rank the resources
based upon self-protection capability[13]. Self-protection
capability of an resource is calculated by given weightage to
important security factors. The values of these factors differ
in the range between 0 and 1. The security factors and their
proportions are listed in the following table:

Table 1: Security Factors and their value

Security Factors Proportion(P)

Anti-virus Capabilities (AV) 0.85
Firewall Capabilities (FC) 0.9

Authentication Mechanism(AM) 0.8

Secured File Storage Capabilities(SFC) 0.7

Based on these security factors SPC is calculated as:
 n
 SPC = ∑ P(i)
 i=1
 n

Where,
n = the total number of factors.
P(i) = the proportion.

Based on all these factors we can calculate the rank of the
resource as follows:

Rank(R) = AV+FC+AM+SFC
 4
Local scheduler give ranking to the resources based upon
rank value [12], so that most reliable node come upward in
the list.
 The Local level scheduler decomposes application received
from Global level into set of jobs. These jobs are input to the
Local level algorithm. Different algorithms executed on local
and global scheduler level like Round Robin, First come first
serve scheduling algorithms.

3.1.2 Meta Scheduler:
Both local and Meta schedulers aim at resource allocation
and management but Meta-schedulers are different from
local scheduler. Because Local schedulers are used to
perform the scheduling task at local site level, whereas meta-
schedulers communicate to all the local scheduler to update
the status of available nodes. There are three major goals for
a meta-scheduler, first is to maximize the resource
utilization, second is load balancing and third is to allocated
user applications fairly to the resources for scheduling.
Meta-scheduler keeps the information about all resources.
When the job is come for execution; meta-scheduler will
arrange the jobs in a queue for scheduling in the local
scheduler. Meta-scheduler will also collect the current data
availability from both the users and resource providers’ at
periodically interval. The meta-scheduler distribute jobs to
multiple sites, instead of sending the jobs to most lightly
loaded site to achieve the resource utilization and load
balancing. A collective effort of a local and meta-scheduler a
better scheduling decision can be taken.

4. WORKING STEP of META SCHEDULER
For each local site there is a local scheduler which maintain
the information of all the resources i.e. no. of resources are
occupied by some tasks and no. of resources are available for
execution.
Step 1:- Local schedulers are connected with Meta
scheduler and rank the resources based upon self-
protection capability of the resources i.e. Anti-virus,
Firewall, Secured File Storage Capabilities, Authentication
Mechanism.
Step 2:- The meta-scheduler on regular periodic intervals
collects the information from the user and resource
provider from local scheduler.
Step 3:- When the users submit his job request then Meta
scheduler match jobs to the available resources.
Step4:- if the Resources required by

application < available resources then
Job is submitted to resources without any ranking
mechanism.
 Else

 Meta Scheduler

 Local Local Local Local

Scheduler Scheduler Scheduler Scheduler

Local

Site-1

Local
Site -2

Local
Site -3

Local
Site -N

No. of

Available

resources

with details

No. of

Available

resources

with details

No. of

Available

resources

with details

No. of

Available

resources

with details

No. of Resource Available for Site-1 with details
 No. of Resource Available for Site-2 with details

No. of Resource Available for Site-3 with details

 :
 :

 No. of Resource Available for Site-N with details

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 2840

Rank the resources based upon reliability and status
updation values and Submit the resources to top most
resources.
Step 5: Apply Min Min algorithm
Step 6:- Meta-scheduler also maintain the Job queue for
pending jobs and in the next scheduling cycles those
pending jobs will be executed.

5. EXPERIMENTAL SETUP
We have setup a simulated Grid environment to evaluate the
proposed Decision based Meta Scheduler scheduling
algorithm. We used GridSim simulator for simulating Grid
environment and the experimental results shown in Fig. 2.
We used Pentium—i3 based system with CPU clock speed of
1.7 GHz, 4GB RAM running with Windows 7 operating
system. The simulation is based on the grid simulation tool
kit [9] Gridsim Toolkit 4.0 which allows modeling and
simulation entries in grid system. The heterogeneous
environment is build by various resource specifications. The
resource in the grid environment differs in Operating
system, CPU speed, memory and bandwidth. The
performance of the algorithm with large no of jobs is
analyzed and also compared with FCFS[7], round robin[8]
approach. The Decision based Meta Scheduler scheduling
algorithm and the conventional FCFS, round robin are
compared by their makespans on the same set of tasks.

Table-2: System attributes and its values

Parametrs Value
No. of Jobs 10-100
No. of Processing Elements 2-15
Resource requirements
(MIPS)

1000-6000

Speed of resource nodes
(MIPS)

1000-6000

The main aim for submitting a job is to minimize the
makespan time. In our simulation test we have taken
10-100 jobs and considered 2-15 processing elements.
In our simulation setup we have various nodes with
different jobs for selecting the resources FCFS, Round
Robin and our Decision based Meta Scheduler
In the first step we have consider totally 10 nodes are
available in the grid, for executing all the 100 job it
takes more time as shown in fig. 2, likewise if no. of
nodes increases, makespan time of the job is
decreased. The execution time for our decision based
algorithm is minimal if it’s compared with the other
two methods.

0

1000

2000

3000

4000

5000

6000

No. of Jobs

10 40 70 100

NO. of Resources

Makespan Time Comparison

FCFS

RR

Decesion

based

 Fig2: Makespan Time Comparison

As clearly shown in Fig2 the decision based meta scheduler
outperforms the conventional FCFS, Round Robin heuristic.
The makespan of decision based meta scheduler is
approximately 22% shorter than that of the conventional
FCFS Scheduling on the same set of tasks and 13% shorter
then Round Robin Scheduling.

6. CONCLUSIONS
 Resource Scheduling is one of the well-known problems in
distributed computing systems such as Grid environments.
In this paper we propose an approach for resource
scheduling based upon meta scheduling architecture. In
proposed method meta-scheduler on regular periodic
intervals collects the information from the user and resource
provider from local scheduler. In our proposed approach we
effectively utilized all the resource because the jobs are
submitted to appropriate resources. The experimental result
shows that proposed algorithm outperforms the traditional
FCFS, Round Robin heuristic on the same set of task.

7. REFERENCES
[1] Thomas A. Henzinger, Vasu Singh, Thomas Wies, Damien
Zufferey: Scheduling large jobs by abstraction refinement.
EuroSys 2011: 329-342
[2] Asef Al-Khateeb ,Nur’Aini Abdul Rashid, Rosni Abdullah,
“An Enhanced Meta-scheduling system for grid computing
that considers the job type and priority”, Computing
(Springer Journal), Vol. 94, issue: 5 ,pp 389-410,2012.
 [3] Salman Meraji, M. Reza Salehnamadi ,A Batch Mode
Scheduling Algorithm for Grid Computing ,”Journal of Basic
and Applied Scientific Research ,Volume:3 , Issue: 4, pp. 173-
181, 2013.

 [4] Sadegh Nejatzadeh et al., A New Heuristic Approach for
Scheduling Independent Tasks on Grid Computing Systems”,
International Journal of Grid and Distributed Computing, Vol:
6, Issue:4 , 2013
 [5] Javad Akbari Torkestani, “A New Distributed Job
Scheduling Algorithm For Grid Systems”, Cybernetics and

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 2841

Systems: An International Journal, Volume 44 Issue 1,pp 77-
93 2013.
[6] D. Thilagavathi & Dr. Antony Selvadoss Thanamani “A
Survey on Dynamic Job Scheduling in Grid Environment
Based on Heuristic Algorithms “ published inInternational
Journal of Computer Trends and Technology- volume3Issue4-
2012
[7] U. Schwiegelshohn, R. Yahyapour, Analysis of First-Come-
First-Serve parallel job scheduling, in: Proceedings of the 9th
SIAM Symposium on Discrete Algorithms, 1998, pp. 629_638.
[8] Izakian Hesam, Abraham Ajith and Snasel
Vaclav,Comparison of Heuristics for Scheduling Independent
Tasks on Heterogeneous Distributed Environments, The
2009 IEEE International Workshop on HPC and Grid
Applications(IWHGA2009), China, IEEE Press, USA, ISBN 978-
0-7695-3605-7, pp. 8-12, 2009a.
[9] I. Foster, C. Kesselman, The Grid_Blueprint for a New
Computing Infrastructure, Morgan Kaufmann Pub., 1998.
[10] Xuan Wang And Ling-Fu Kong “Study On Grid Resource
Selection Method Based On Multi-Goals” Proceedings Of The
Sixth International Conference On Machine Learning And
Cybernetics, Hong Kong, 19-22 August 2007.
[11] YU Huashan And XU Zhuoqun “Standardizing Resource
Selection and Access On Computational Grids” Proceedings
Of The Fifth International Conference On Grid and
Cooperative Computing (GCC'06).
[12] Lilian Noronha Nassif, José Marcos Nogueira And Flávio
Vinícius De Andrade “Distributed Resource Selection In Grid
Using Decision Theory”, Seventh IEEE International
Symposium On Cluster Computing And The Grid(Ccgrid'07).
[13] Dr. Rajesh K. Bawa and Gaurav Sharma, “Reliability and
Performance Based Resource Selection in Grid
Environment”, International Conference on High
Performance Architecture and Grid Computing, Published in
Springer Proceeding Series: Communications in Computer
and Information Science, Volume 169, 19-20, July 2011, pp.
449-454.

