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Abstract - This paper work is entirely focused on 
implementation of 32-bit polar encoder by using the 
algorithm based on FFT (Fast Fourier Transform) 
method. Associated theory of Polar code and related 
architecture and application is briefly described in this 
paper. In this paper FFT algorithm for constructing Polar 
Encoder is highlighted in one of subsection. Polar encoder 
design is mainly targeted for Xilinx spartan6 FPGA (field 
programmer gate array) and designed using Verilog HDL 
(Hardware Description Language). Simulation result of 
the designed 32-bit polar encoder (by using Verilog HDL) 
is taken using Xilinx ISE (Integrated Synthesis 
Environment) 14.2 tool. 
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1. INTRODUCTION  
 
 The polar code was developed by Erdal Arikan. It 
belongs to the new class of error correction codes. The 
polar code approaches the channel capacity property 
which is asymptotical, and it is having good error 
correcting performance capabilities which is obtained 
for long polar code.  The fully parallel architecture is 
intuitive and easy to implement, but it is not suitable 
for long polar codes due to much more hardware 
complexity. Hence the paper present the encoding 
process in the viewpoint of VLSI implementation and 
partially parallel architecture is proposed. The 
proposed encoder is highly efficient in implementing a 
long polar encoder, because it can achieve a high 
throughput with a smaller hardware complexity. 
 
2. POLAR ENCODER 
 
 The encoding process is characterized by the 
generator matrix. The generator matrix  for code 
word length N or  is generated by applying the  
Kronecker power to the kernel matrix 

 
 For a generator matrix, the code word length is 
determined by x = u. , where u and x indicates 
information data and code word vectors, respectively. 

Throughout this paper, it is assumed that the 
information data vector u is arranged in a natural 
order, whereas code word vector x is in the bit-
reversed order to simplify the encoding process. A 
straightforward fully parallel encoding architecture is 
presented in [1], which has encoding complexity of 

for a polar code of length N and takes n 

stages when  A polar code with a length of 32-
bit is implemented with 80 XOR (exculsive-or) gates 
and processed with five stages, as shown in Fig. 1. In 
the fully parallel encoder, the whole encoding process 
is completed in a one clock cycle. 
 

 
  

3. PROPOSED POLAR ENCODER 
 

 Partially parallel structure to encode long polar 
codes efficiently is described and shown in figure1. To 
clearly show the proposed approach and how to 
transform the architecture, a 4-parallel encoding 
architecture for the 32-bit polar code and the fully 
parallel encoding architecture after  transformation to 
a folded architecture is illustrated in depth as shown in 
figure 2. 
 
3.1 FOLDED TECHNIQUE 
 
 The DFG (Data Flow Graph) of the 32-bit polar code 
is same as that of Fast Fourier Transform (FFT), and it 
shown in figure 3 and it uses the kernel matrix in the 
place of butterfly operation. The 4-parallel folded 
architecture is realized by placing two (2) functional 
units in each stage, since each of the functional units 
calculate two bits at a time. Considering the four 
parallel input sequences in normal order. The initial 
folding sets is given as: For stage 1: {P0, P2, P4, P6, P8, 
P10, P12, P14}, {P1, P3, P5, P7, P9, P11, P13, P15}. 
Here, the two functional units of stage 1 namely P0 and 
P1 perform concurrently at the beginning and P2 and 
P3 at the following clock cycle. The stage whose index s 
is less than or equal to , where P is the level of 
parallelism and has the same folding set as that of the 
earlier one. The stage 2 has the same order as those of 
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stage 1, because it performs the operation within the 
same four inputs. At future stages, the folding sets are 
calculated by, the property that the functional unit that 
process a pair of inputs whose indices vary by 2(s−1) is 
exploited. Thus the folding set of stage 2 is given as 
{Q0, Q2, Q4, Q6, Q8, Q10, Q12, Q14}, {Q1, Q3, Q5, Q7, 
Q9, Q11, Q13, Q15}. In the stage 3, the indices of the 
two data vary by a factor of four, thus cyclic shifting of 
four bits right by one can be done by introducing a 
delay of one time unit. Thus the folding sets of stage 3 
are given by {R14, R0, R2, R4, R6, R8, R10, R12}, {R15, 
R1, R3, R5, R7, R9, R11, R13}. The folding set of stage 4 
and stage 5 is generated by cyclic shifting of stage 3 by 
two in order to enable full utilization of functional units 
with neighbouring iterations. The folding sets of stage 
4 and stage 5 is given as {S10, S12, S14, S0, S2, S4, S6, 
S8}, {S11, S13, S15, S1, S3, S5, S7, S9} and {T2, T4, T6, 
T8, T10, T12, T14, T0}, {T3, T5, T7, T9, T11, T13, T15, 
T1} respectively. 
 

 

Figure 1:  32-bit parallel pipelined polar encoder 

Figure 2: 4-parallel folded architecture for 32-bit polar code 

 
Figure 3: 32-bit Data Flow Graph for polar code  

 

4. RESULT 
 
 The simulation results for 32-bit polar encoder 
which is obtained by simulating the Verilog code for the 
design and RTL schematic as shown in figure 4 and 5 
respectively. 

 

Figure 4: Simulation Result for 32-Bit Polar Encoder 
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Figure 5: RTL Schematic 

 

3. CONCLUSION 
 
  This paper minimizes the hardware resources for 
the 32 bit polar encoder. Many optimization techniques 
are implemented in steps to arrive at the proposed 
architecture for various folding levels. The simulation 
results show that the folded structure abides the polar 
encoder functionality and RTL schematic is obtained. 
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