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Abstract - Dynamic programming offers a theoretical way 
to solve optimal control problems.  However, it suffers from 
the inherent computational complexity, also known as the 
curse of dimensionality.  To achieve online approximation of 
the cost function and the control policy, neural networks are 
widely used in the previous ADP architecture.  The main 
purpose of this paper is to develop a novel dynamic 
programming methodology to achieve global and adaptive 
suboptimal stabilization of uncertain nonlinear systems via 
online learning.  In this paper an optimization problem, of 
which the solutions can be easily parameterized, is proposed 
to relax the problem of solving the Hamilton-Jacobi-Bellman 
(HJB) equation.  This approach is inspired from the 
relaxation method used in approximate dynamic 
programming.  It is also proposed that a relaxed policy 
iteration method is different for the inverse optimal control 
design and the results are obtained by M-file programming. 
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1.INTRODUCTION 
 
The main purpose of this paper is to develop a novel method 
to achieve adaptive optimal stabilization of nonlinear system 
via online learning.  As the first contribution of this paper, an 
optimization problem is proposed to relax the Hamilton-
Jacobi-Bellman (HJB) equation.  The second contribution of 
the paper is an online learning method that implements the 
proposed iterative schemes using only the real-time online 
measurements, when the perfect system knowledge is not 
available.  The final contribution of this paper is the Robust 
Design of the approximate suboptimal control policy, such 
that the overall system can be globally asymptotically stable 
in the presence of dynamic uncertainties.  

2. PROBLEM FORMULATION AND PRELIMINARIES 
 
In this section, we first formulate the control 
problem[16][17].  Then, we introduce conventional policy 
iteration algorithm. 

2.1 Problem formulation 
 
     Consider the nonlinear system 

dx/dt = f(x) + g(x)u                                                            (1.1) 

where, 
     x is the system state,  
     u is the control input,  
     f(x) and g(x) are locally Lipschitz functions with f(0) = 0. 
     In conventional optimal control theory [1], the common 
objective is to find a control policy u that minimizes certain 
performance index. In this chapter, it is specified as follows. 

 

J(x0; u) = ;    x(0) = x0                             (1.2) 

where, 
r(x, u) = Q(x) + uTRu, with Q(x) a positive definite function, 
and R is a symmetric positive definite matrix.  
 

2.2 Optimality and stability 
 
     Here, we recall a basic result connecting optimality and 
global asymptotic stability in nonlinear systems [2]. To begin 
with, let us give the following assumption. 
Assumption 2.1.2. There exists VoϵP, such that the Hamilton-
Jacobi-Bellman (HJB) equation holds[16] 
       

                                    H(Vo) = 0                                           (1.3) 
Where, 

H(V) = VT(x)f(x)+Q(x)-(1/4) VT(x)g(x)R-1gT(x) V(x) 

      
      Under Assumption 2.1.2, it is easy to see that Vo is a well-
defined Lyapunov function for the closed-loop system 
comprised of (1.1) and  

      uo(x) =  R-1gT(x) Vo(x)                               ( 1.4) 

Hence, this closed-loop system is globally asymptotically 
stable at x = 0 [3]. Then, according to [2], uo is the optimal 
control policy, and the value function Vo(x0) gives the 
optimal cost at the initial condition x(0) = x0, i.e., 
                     Vo(x0) = min u  J(x0, u) = J(x0,uo),  x0 Rn:     (1.5) 

By Theorem 3.19 in [2], along the solutions of the closed-

loop system composed of (1.1) and u=  =  R-1gT , it 

follows that (x0) = Vo(x0)-  0 - 2
R dt,    x0 Rn (1.6)   

Finally, comparing (1.5) and (1.6), we conclude that Vo =  . 
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Algorithm 2.1.1 Conventional policy iteration: 
1. Policy evaluation: For i = 1; 2; _ _ _ , solve for the cost 
function Vi(x)  1, with Vi(0) = 0, from the following partial 

differential equation. 
                                      (Vi (x), ui (x)) = 0.                             (1.7) 

2. Policy improvement: Update the control policy by 

                                      ui+1 (x) =  R-1gT(x) Vi(x)            (1.8) 

 
     The following result is a trivial extension of [4, Theorem 
4], in which g(x) is a constant matrix and only stabilization 
over compact set is considered. 
     Notice that finding the analytical solution to (1.7) is still 
non-trivial. Hence, in practice, the solution is approximated 
using, for example, neural networks or Galerkin's method 
[5]. When the precise knowledge of f or g is not available, 
ADP based online approximation method can be applied to 
compute numerically the cost functions via online data [6], 
[7]. 
     In general, approximation methods can only give 
acceptable results on some compact set in the state space, 
but cannot be used to achieve global stabilization. In 
addition, in order to reduce the approximation error, huge 
computational complexity is almost inevitable. These facts 
may affect the effectiveness of the previously developed 
ADP-based online learning methods. 

 

2.3. Semidefinite Programming (SDP) 
 
According to the equivalence between SOS programs and 
SDPs, the SOS-based policy iteration can be reformulated as 
SDPs [16] [17]. Notice that we can always find two linear 
mappings       : Rn

2r x Rm x n
r  Rn

2d and  : Rn
2r Rm x n

r , such 

that given p Rn
2r and k   Rm x n

r , 

 (p,k)T[x]2,2d = (pT[x]2,2r,k[x]1,2r-1)                                    (1.9) 

(p,k)T[x]1,2r-1 =  R-1gT (pT [x]2,2r)                                   (1.10) 

    Then, by properties of SOS constraints [8], the polynomial  
(p, k)T[x]2,2d is SOS if and only if there exists a symmetric 

and positive semidefinite matrix L  Rn
d

 x n
d , such that 

(p, k)T[x] 2,2d = [x]T
1,d L[x]1,d                                                 (1.11) 

Furthermore, there exist linear mappings MP: Rn
r
x n

r
  Rn

2r 

and ML : Rn
d

xn
d  Rn

2d, such that, for any vectors p Rn
2r , l  

Rn
2d , and symmetric matrices P Rn

r
xn

r and L  Rn
d

x n
d , the 

following implications are true. 
pT [x]2,2r = [x]T 1,r P[x]1,r   p = MP (P)                              (1.12) 

 lT [x]2,2d = [x]T 1,d L[x]1,d  l = ML(L)                                (1.13) 

using above assumptions policy iteration can be 
reformulated as follows.  
Algorithm 2.2.1 SDP-based policy iteration: 
1. Let i = 1. Let p0  Rn

2r and K1  Rm x n
d satisfy V0= p0 

T[x]2,2r 

and u1 = K1[x]1,d. 
2. Solve for an optimal solution (pi; Pi; Li) Rn

2r x Rn
r
x n

r x Rn
d

x 

n
d to the following problem. 
                    minp,P,L  cT p                                                    (1.14) 

           s.t.          (p,ki) = ML(L)                                              (1.15) 

                      pi-1 - p = MP (P)                                              (1.16) 
                         P = PT  0                                                     (1.17) 

                        L = LT  0                                                     (1.18) 

where c = 2,2r dx. 

3: Go to Step 2 with ki+1 = (pi) and i replaced by i+1. 

 

3. ONLINE LEARNING VIA GLOBAL ADAPTIVE 
DYNAMIC PROGRAMMING 
 
The proposed policy iteration method requires the perfect 
knowledge of the mappings  and  , which can be 

determined if f and g are known exactly. In practice, precise 
system knowledge may be difficult to obtain. Hence, in this 
section, we develop an online learning method based on the 
idea of ADP to implement the iterative scheme with real-
time data, instead of identifying the system dynamics. To 
begin with, consider the system 
                                  = f + g(ui + e)                                     (1.19) 

where ui is a feedback control policy and e is a bounded 
time-varying function, known as the exploration noise, 
added for the learning purpose.  
     Lemma 3.1.1.  Consider system (1.19). Suppose ui is a 
globally stabilizing control policy and there exists Vi-1 , 

such that 
 Vi-1(f + gui) + uT

i Rui  0.  

Then, by completing the squares, it follows that 
VT

i-1(f + gui + ge)  -ui
T Rui - 2ui

T Re 

= - │ui +e│2
R + │e│2

R
 

│e│2
R 

 │e│2
R +Vi-1 

Suppose there exist p  and ki  such that V = 

pT [x]2,2r and ui = ki[x]1,d. Then, along the solutions of the 
system (1.19), it follows that 

 = VT (f + gui) + VTBe 

= - r(x, ui) -  (V, ui) + VT ge 

= - r(x, ui) -  (V, ui) + 2( 1/2R-1gT V )T Re 

= - r(x, ui) -  (p,ki)T [x]2,2d - 2[x]T
1,d (p)T R e   (1.20) 

where the last row is obtained by (1.9) and (1.10). 
Now, integrating the terms in (1.52) over the interval [t, t + 

t], we have 

pT ([x(t)]2,2r - [x(t + t)]2,2r) 

= x,ui)+ (p,ki)T[x] + 2[x]T
1,d (p)TRe]dt                (1.21) 

Eq. (1.21) implies that, given p  Rn
2r , (p,ki) and (p) can be 

directly calculated by using real-time online data, without 
knowing the precise knowledge of f and g. 
Indeed, define 

e = -[[x]T
2,2d  2[x]T

1,d eTR ]T  Rn
2d

+mn
d , 

i=[ edt e dt… e dt ]T Rq
i
x(n

2d
+mn

d
)
  

i =  [ , ui) dt  ui) dt…   ui) dt ]T  

Rq
i , 

Θi = [[x]2,2r│t0,i
t1,i…..[x]2,2r│tqi-1,i

tqi,i ]T  Rqi x n
2r ; 

Then, (1.21) implies 
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i [ ] = i
 + Θi p.                                                   (1.22) 

Assumption 3.1.2. For each i = 1; 2; _ _ _ , there exists an 
integer qi0, such that when qi  qi0 the following rank 

condition holds. 
rank( i) = n2d + mnd .                                                           (1.23) 

Remark 3.1.2. Such a rank condition (1.23) is in the spirit of 
persistency of excitation (PE) in adaptive control and is a 
necessary condition for parameter convergence. 
     Given p Rn

2r and ki  Rm x n
d , suppose Assumption 3.1.2.   

is satisfied and qi  qi0 for all i= 1,2,…. Then, it is easy to see 

that the values of (p,ki) and (p) can be uniquely 

determined from  

     [ ]= ( i
T

i)-1
i
T( i

 + Θi p)                          (1.24) 

     Now, we are ready to develop the ADP-based online 
implementation algorithm for the proposed policy iteration 
method. 
Algorithm 3.1.4. Global adaptive dynamic programming 
algorithm 
1: Initialization: Let p0 be the constant vector such that V0 = 
p0

T[x]2,2r, and let i = 1. 
2: Collect online data: Apply u = ui+e to the system and 
compute the data matrices i, i, and Θi, until the rank 

condition (1.23) in Assumption 3.1.2 is satisfied. 
3: Policy evaluation and improvement: Find an optimal 
solution (pi, ki+,, Pi, Li) to the following optimization problem 
                   min p,K,P,L  cT p                                                        (1.25) 

        s:t:      [   ] =  ( i
T

i)-1
i
T( I + Θi )               (1.26) 

                    pi-1 - p = MP (P)       (1.27) 
                    P = PT  0                         (1.28) 

                    L = LT  0         (1.29) 

Then, denote Vi = pi
T[x]2,2r, ui+1 = ki+1[x]1,d, and go to Step 2) 

with i i + 1. 

 
 

4. ONLINE IMPLEMENTATION VIA GLOBAL 
ADAPTIVE DYNAMIC PROGRAMMING 
 
Let V = pT . Similar as in Section above, over the interval [t, t 

+ t], we have  

pT [ (x(t)) -   (x(t + t))] 

=  ui) + (p,ki)T  + 2  (p)T Re] dt                 (1.30) 

     Therefore, (1.30) shows that, given p  RN
1, (p, Ki) and 

(p) can be directly obtained by using real-time online data, 

without knowing the precise knowledge of f and g.  
Indeed, define [17] 

e = - [ T 2 T  e T R] T  Rl
1

+ml, 

 

i=[ e dt e dt… e]T Rqi x (l
1

+ml), 

i=[ ui)dt ui)dt… ui)dt]T  Rqi , 

i=[ (x)│t1,i
t0,i [ (x)│t2,i

t1,i ……]T  Rq
i
 x N

1 

Then, (1.30) implies 

     i  [   ] =  i +  I p.                                    (1.31) 

Assumption 4.1.1. For each i = 1; 2; _ _ , there exists an integer 
qi0, such that, when qi qi0, the following rank condition 

holds. 
rank( i) = l1 + ml.                         (1.32) 

     Let p RN
1 and ki  Rm x l. Suppose Assumption 4.1.1  holds 

and assume qi qi0, for i = 1,2, _ _ . Then,  (p,ki) and  (p) can 

be uniquely determined by  

[ ] = ( i
T

i)-1
i
T ( I + i p)                                   ( 1.33) 

     Now, we are ready to develop the ADP-based online 
implementation algorithm for the proposed policy iteration 
method. 
Algorithm 4.1.2 Global adaptive dynamic programming 
algorithm for non-polynomial systems 
1: Initialization: Let p0 and k1 satisfying 

  and let i = 1. 

2: Collect online data: Apply u = ui+e to the system and 
compute the data matrices i, i , and i, until the rank 

condition (1.32) is satisfied. 
3: Policy evaluation and improvement: Find an optimal 
solution (pi, hi, Ki+1) to the following optimization problem 
                        min p,h,k   cT p                                      (1.34) 

s:t:       [ ] = ( i
T

i)-1
i
T ( I + i p)                        (1.35) 

                 h  S+
                                                                       (1.36) 

              pi-1 - p  S+
                                                        (1.37) 

Then, denote Vi = pi  and ui+1 = ki+1 . 

4: Go to Step 2) with i    i + 1. 

 
 

5. ROBUST REDESIGN 
 
Consider nonlinear system with dynamic uncertainties as 
follows [17] 
  = q(w, x)                        (1.38) 

  = f(x) + g(x) [u + (w, x)]                    (1.39) 

where x  Rn is the system state, w Rn
w is the state of the 

dynamic uncertainty, u  Rm is the control input, f : Rn  Rn 

and g : Rn   Rn x m are unknown polynomial mappings with 

f(0) = 0. 
      Again, in the presence of the dynamic uncertainty, i.e. the 
w-subsystem, Algorithm 4.1.2. may not lead to an optimal or 
suboptimal control policy, since ui obtained in Algorithm 
4.1.2. may not be stabilizing for the overall system (1.38)-
(1.39). Therefore, to balance the tradeoff between global 



          International Research Journal of Engineering and Technology (IRJET)      e-ISSN: 2395 -0056 

               Volume: 03 Issue: 05 | May-2016                       www.irjet.net                                                               p-ISSN: 2395-0072 

 

© 2016, IRJET       |         Impact Factor value: 4.45        |       ISO 9001:2008 Certified Journal       |      Page 2285 
 

robust stability and optimality, here we develop a method to 
redesign the control policy. Similarly as in the previous 
chapter, the idea is inspired from the work by [9, 10]. 
     To begin with, we define the cost functional as 

         min J(x0, u) = TRu] dt,                           (1.40) 

where Q(x) = Q0(x) + 2, with Q0(x) is a positive definite 

function,  > 0 is a constant, R is a symmetric and positive 

definite matrix. 
      Our design objective is twofold. First, we intend to 
minimize the cost (1.40) for the nominal system  

                                    = f(x) + g(x)u,                (1.41) 

by finding online an optimal control policy uo. Second, we 
want to guarantee the stability of the system comprised of 
(1.38) and (1.39) by redesigning the optimal control policy. 
To this end, let us introduce the following Assumption. 
Assumption  5.1.1. Consider the system comprised of (1.38) 
and (1.39).  

There exist functions ,  , 1, 2, 3  , and positive 

definite functions W and 4, such that for all w  Rp and x  

Rn, we have 
                                   (│w│)  W(w)   (│w│),              (1.42) 

                       │ (w, x) │ 1(│w│) + 2(│x│),             (1.43) 

together with the following implication: 
W(w) 3(│x│)  W(w)T q(w, x)  - 4(w).           (1.44) 

Assumption 5.1.1 implies that the w-system (1.38) is input-
to-state stable (ISS) [11, 12] when x is considered as the 
input. 
     Let Vi   and ui be the cost function and the control 

policy obtained from Algorithm 4.1.2. Then, we know that 
(Vi, ui)  0. Also, there exist ,  k , such that the 

following inequalities hold: 

( x )  Vo(x)  Vi(x)  V0(x)   ( x ), x0   Rn ;  

(1.45) 
The robustly redesigned control policy is given below: 
ur,i = 2(│x│2)ui + e            (1.46) 

where (.) is a smooth and no decreasing function with  (s) 

 1,  s > 0, e denotes the time varying exploration noise 

added for the purpose of online learning. 
Theorem  5.1.2. Consider the closed-loop system comprised 
of (1.38), (1.39), and (1.46). Let Vi   and ui be the cost 

function and the control policy obtained from Algorithm 
4.1.2 at the i-th iteration step. Then, the closed-loop system 
is ISS with respect to e as the input, if the following gain 
condition holds: 

> 1  -1  3  -1   + 2,                                             (1.47) 

whereis defined by 

(s) = s                                      (1.48) 

Proof. Let  1 = 3  -1. Then, under Assumption 5.1.1, we 

immediately have the following implications 
W(w)   1(Vi(x)) 

W(w)  3( -1 (Vi(x)) 3(│x│)) 

 W(w)T q(w, x)  - 4(w)                                     (1.49) 

Define  =  . Then, along solutions of the system 

comprised of (1.39), it follows that 
T [f + g (ur,i + )] 

 

 
 

 
 
 

-Q0(x) - 2 x 2 + -2  max{ 2 , e 2} 

-Q0(x) -  -2 (  

Hence, by defining 2 = , it follows 

that 

Vi(x) ,  

Vi(x) max{ ,  

     

,  

 

 
T [f + g (ur,i+1, )]  -Q0(x)                        (1.50) 

Finally, by the gain condition, we have 
> 1  3 2 

  

 
                                                        (1.51) 

The proof is thus completed by the small-gain theorem [13]. 
Similarly as in the previous section, along the solution of the 
system (1.39) and (1.46), it follows that 

 
+  

 
R  

 
                                                                                                       (1.52) 

where -1. 

Therefore, we can redefine the data matrices as follows. 
Indeed, define 

  Rl
1

+ml, 

i=[ e dt e dt… e]T Rqi x (l
1

+ml), 

i=[ ui)dt ui)dt… ui)dt]T  Rqi , 

i=[ (x)│t1,i
t0,i [ (x)│t2,i

t1,i ……]T  Rq
i
 x N

1 
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Then, the global robust adaptive dynamic programming 
algorithm is given below. 
Algorithm 5.1.3. The global robust adaptive dynamic 
programming algorithm 
1: Initialization: Let p0 and k1 satisfying 

, and let i = 1. 

2: Collect online data: Apply u = ur,i =  to the 

system and compute the data matrices i, i, and Θi until the 

rank condition in Assumption 4.1.1,  is satisfied. 
3: Policy evaluation and improvement: Find an optimal 
solution (pi,hi,ki+1) to the following optimization problem 
                                      min p,h,k   cT p                     (1.53) 

s:t:  [ ] = ( i
T

i)-1
i
T ( I + i p)                        (1.54) 

                          h  S+
                                                       (1.55) 

                           pi-1 - p  S+
                                ( 1.56) 

Then, denote Vi = pi  and ui+1 = ki+1 . 

4: Go to Step 2) with i    i + 1. 

 
 

6.  NUMERICAL EXAMPLE 
 
This section provides a numerical example to illustrate the 
effectiveness of the proposed algorithms[17]. 
 
6.1  Jet engine dynamics 
 
Consider the following system, which is inspired by the jet 
engine surge and stall dynamics in [14, 15] 

                                                   (1.57) 

                               (1.58) 
where x > 0 is the normalized rotating stall amplitude,  y is 
the deviation of the scaled annulus-averaged flow, u is the 
deviation of the plenum pressure rise and is treated as the 
control input, a [0.2, 0.5], b [1.2, 1.6], c [0.3, 0.7] are 

uncertain constants. 
    In this example, we assume the variable x is not available 
for real-time feedback control due to a 0.2s time-delay in 
measuring it. Hence, the objective is to find a control policy 
that only relies on y. The cost function we used here is  

J =                        (1.59) 

and an initial control policy is chosen as 

ur,1 =                               (1.60) 

with (s) = . 

   Only for the purpose of simulation, we set  a= 0:3, b = 1:5, 
and c = 0:5. The control policy is updated every 0:25s. The 
simulation results are provided in Chart 1 and chart 2. It can 
be seen that the system performance has been improved via 
online learning. 
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Chart -1: Simulation of the jet engine: Trajectories of y 
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Chart -2: Simulation of the jet engine: Trajectories of x 
 

 
8. CONCLUSIONS 
 
This paper has proposed a Novel method of dynamic 
programming for the adaptive optimal control of nonlinear 
systems. In particular, a new policy iteration scheme has 
been developed. Different from conventional policy iteration, 
the new iterative technique does not attempt to solve a 
partial differential equation but a convex optimization 
problem at each iteration step. 
    It has been shown that, this method can find a suboptimal 
solution to continuous-time nonlinear optimal control 
problems [1]. In addition, the resultant control policy is 
globally stabilizing. In the presence of dynamic uncertainties, 
robustification of the proposed algorithms and their online 
implementations has been addressed, by integration with 
the ISS property [11, 12] and the nonlinear small-gain 
theorem [9, 13].  When the system parameters are unknown, 
conventional ADP methods utilize neural networks to 
approximate online the optimal solution, and a large number 
of basis functions are required to assure high approximation 
accuracy on some compact sets. Thus, neural-network-based 
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ADP schemes may result in slow convergence and loss of 
global asymptotic stability for the closed-loop system. Here, 
the proposed method has overcome the two above-
mentioned shortcomings, and it yields computational 
benefits. 
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