
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 02 | Feb-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1993

Extended List Based HEFT Scheduling using BGA in Multiprocessor

System

Baldeep Singh, Priyanka Mehta

1M.Tech. Student, UGI Lalru, PTU Jhalander, Punjab, India
2Assistant Professor, Dept. Of Comp. Sci. & Engg, UGI Lalru, PTU Jhalander, Punjab, India

---***---

Abstract – Scheduling computation tasks on heterogeneous
processors is the key issue for an advanced computing. In spite
of the fact that numerous scheduling heuristics have been
demonstrated in the text. The present algorithms for diverse
domains are not broad creative due to their high versatile
quality and the quality of the result. A list based scheduling in
multiprocessor system has constantly been a topic of
conversation for the researchers due to its nature of solving
high complexity scheduling problems and to estimate the
additional time of the applied matrix. A lot of earlier research
works have also included prioritization on the Jobs to reduce
the computation cost and earliest finish time of the system.
This paper introduce a complicated move toward which
extends Heterogeneous Earliest Finish Time by performing
Prioritization using bins greedy algorithm which evaluate the
system on the basis of the positive weight , negative weight ,
positive threshold , negative threshold and a fitness function.
The results are analyzed with help of various parameters
namely: schedule length, speedup and efficiency.

Key Words: List Based Scheduling. HEFT, EST, EFT, SLR,
BGA.

1. Introduction

A range with different system resources which can be used
for the execution of intensive applications and can be local or
geographically distributed are heterogeneous systems. For
executing parallel applications on the heterogeneous
platform, the advantage from the parallel application
scheduled methods used to taken. Because of the varied
number of execution rates and the communication cost
between the processors, the task scheduling problem
become more difficult. DAG is a well-established illustration
of set of tasks that known as an application with inter-task
dependencies. The major goal of scheduling is divide an
application into number of tasks and allocate onto best
suitable processor to reduce the overall execution time. The
problem for allocating the task to the best processor is NP-
hard. The research efforts have focused on obtaining the low
complexity heuristics for developing better schedules.
Numbers of approaches have been proposed for solving the
static scheduling problems. Most of them focused on
homogenous processes. The target of scheduling is to
decrease the execution time, by designating greatest number
of resources to the executable framework. Scheduling

problem can be of two types that are Static and Dynamic. In
static scheduling, execution time of the job, assignment
conditions are known ahead of time and it is done at
assemble time. Static scheduling is also known as non
preemptive, once an application is entered for scheduling
that cannot stopped until execution is completes In dynamic
Scheduling [6 10 22], the execution time of the assignment,
undertaking conditions are known when necessary. Dynamic
scheduling is also known as preemptive scheduling. Tasks
are executed at the time of execution while they need. The
main objective of dynamic scheduling is Minimization of the
execution time of the assignment and scheduling overhead.
The problem of scheduling following set of tasks to
processor can be divided into categories- Job scheduling,
Scheduling and mapping. Independent jobs are to be booked
among the processors of a distributed registering framework
to upgrade general framework execution in task Scheduling
Framework and in Scheduling and Mapping; the assignment
of various cooperating undertakings of a single parallel
program to minimize the consummation time on the parallel
PC framework is considered. Our main focus is on list
scheduling algorithm which is presenting in this paper used
in heterogeneous environment.

2. Related Work

In this area, we display a brief summary of task scheduling
algorithms, mainly list based heuristics. We display their time
difficult quality and their next to execution. Haluk Topcuoglu
et.al [4] they present two novel scheduling algorithms for a
delimited number of heterogeneous processors with an
objective to concurrently meet high performance and fast
scheduling time, which are called the Heterogeneous Earliest
Finish Time (HEFT) algorithm and the Critical Path on a
Processor (CPOP) algorithm. Hwang et.al optional that the
heterogeneous soon EST complete time (HEFT) scheduling
algorithm [8] appoint the scheduling task priority in light of
the most prompt begin time of every single task. HEFT
allocate a task to the processor which minimizes the task's
begin time. Rewini et.al recommended that mapping heuristic
(MH) [9] allots the task scheduling priority s in light of the
static b-level of every task, which is the b-level without the
communication fixed cost between task s. At that point, a task
is assign to the processor which gives the most prompt begin
time. Iverson et.al recommended that the level zed-min time
(LMT) [10] appoints the task scheduling priority in two
stages. An initially, it clusters the task s into characteristic
levels in light of the topology of the DAG, and later in every

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 02 | Feb-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1994

level, the task with the most noteworthy priority is the one
with the biggest execution cost. A task is dispensed to the
processor which minimizes the total of the combined
communication costs with the tasks in the past level and the
task's execution cost. R. Eswari and S. Nickolas et.al [12], in
this paper, an additional static scheduling algorithm is
planned called expected conclusion time based scheduling
(ECTS) algorithm, which is used to effectively plan
application tasks on to the heterogeneous processors. The
ECTS algorithm discovers the task succession for finishing by
allocating priority and after those maps the selected task
progression on to the processors. Mohammad I. Daoud, and
Nawwaf Kharma et.al [13], In this paper, they show another
new high performance scheduling algorithm, called the
greatest dynamic critical path (LDCP) algorithm, for HeDCSs
with a imperfect number of processors. The LDCP algorithm
is a list-based scheduling algorithm that uses a new attribute
to productively select tasks for scheduling in HeDCSs. The
proficient choice of tasks empowers the LDCP algorithm to
produce high-quality task schedules in a heterogeneous
computing environment. The solution of the LDCP algorithm
is contrast with two of the best existing scheduling
algorithms for HeDCSs: the HEFT and DLS algorithms. The
assessment study demonstrates that the LDCP algorithm
beats the HEFT and DLS algorithms in terms of schedule
speedup and length. Samia Ijaz et.al [14], a novel method has
been accessible in the paper for the creative mapping of the
DAG based applications. The methodology that considers the
lower and upper restrictions for the begin time of the tasks.
The algorithm is taken account on list development approach
and has been compare with the well known list scheduling
algorithms accessible in the literature.

Section 3 describes the scheduling problem, Section 3
represents the task model, Section 4 describes the proposed
algorithm, Sections 5 shows the results and discussion and
section 6 finishes off the conclusion and future scope.

3. Scheduling Problem

The problem presented in this paper is the static
scheduling of a reserved application in a heterogeneous
structure with P set of processors, V set of vertices, E set of
edges between two vertices. Overall mathematically it can be
explained as G = (V, E) where V is the set of vertices and E is
the edge between two vertices. As said above, task scheduling
can be separated into Static and Dynamic methodologies [8].
Dynamic scheduling is satisfactory for situation where the
framework and task parameter are not known at compile
time, which make choices to be made at runtime however
with extra overhead. An example domain is a framework
where clients submit jobs, whenever, to teach computing
jobs. A dynamic algorithm is obliged on the basis that the
workload is just known at runtime, similar to the status of
every processor when new tasks arrive. As a consequence of
this, a dynamic algorithm not ensures that it have all work
essentials accessible among scheduling and can't promote in
light of the entire workload. By separation, a static
methodology can expand a schedule by allowing for all tasks
freely of execution request or time in light of the fact that the

schedule is created before execution start and present no
operating cost at runtime.

The problem here is to design a fitness function which can
minimize the EST and EFT of the provided set of vertices.
Minimizing the EST and EFT would also result into an
enhancement in the efficiency of the computation and
increase in the speed of the processing.

 4. Task Model

A parallel list is communication as DAG (Directed Acyclic
Graph) and is established as:

G = (V, E)

Where V is a set of v nodes and each node vi є V represent
an application task, which include its training that must be
executed on the same machine. E is a situated of e
coordinated edges between tasks, each e (i, j) є E represents
node in the DAG demonstrates the amount of all tasks and
they must be executing successively. Edges e in the DAG
speaks to the connection messages and is spoken to as (n1,
nn). The source node is called protector node or parent node.
The sink node is called child node. The node with no section
is called exit node [6]. In other words it can be stated that
DAG is a set of vertices, its edges and the communication and
computation cost of the system. DAG or any kind of such
scheduling algorithm is used to reduce the overall processing
cost if the tasks and the processors are running on the same
environment. Latency time plays a crucial role in terms of
edge selection between the nodes. At a time frame vi nodes
needs to send data elements to vj with the exception that if
both the vertices vi and vj are assigned to the same processor
then there must be priority model which can evaluate that
which task would be executed first and which task would be
executed later. Prioritization can be achieved in many ways
like providing the priority on the basis of the communication
or computation cost. Node with least communication cost
would be executed first. Another method of prioritization is
ranking through HEFT. Table 1 represents the computation
cost between processors.

Fig-1: Task graph Table-1: Computation Cost

 Weight w of every node communicates with the vertices
to know the processing expenses w (n). W is a (v*q) defines
computation cost matrix in each wi,j gives estimated
execution time to complete application ni on pj processor.
Average execution cost of an application ni is describe as

wi = ∑q
j==1wi,j /q (1)

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 02 | Feb-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1995

Transfer rate of data transfer among processors are
stored in a matrix B, their size is q*q. Processors
communication startup time is given in q_dimensional vector
is L. their task ni to task nk, (which is scheduled onto pm and
pn) is communication cost among edges, describe as

ci,k=L+ {data(i,k)/B(m,n)} (2)

Both the tasks are assigning onto same processor, their
interprocessor communication onto same processors is zero.
The average communication cost between edges (i,j) is
described as:

Ci,k=L+{data(i,k)/B} (3)

Where transfer rate onto processors average defined by B
and average communication startup time defined by L. Now
we describe the earliest startup time (EST (ni, pj)) AND
earliest finish time (EFT (ni, pj)) of application ni onto
processor pj, their entry task is

EST (nentry, pj) = 0 (4)

In order to calculate the EFT of a task ni, all immediate
parent tasks of ni must have been scheduled shown in (5) and
(6).

EST (ni,j)=max{avail[j], (max/(nmϵpred(ni))(AFT(nm)+cm,i))}

 (5)

EFT (ni, pj) = wi,j +EST(ni, pj) (6)

Where pred(ni) is the list of immediate parent applications
of task ni and avail[j] is the minimum time which the pj is
ready for execution. This process is not executes in case of all
the tasks are not assigned to processors. After the scheduling
of all tasks onto available processors, they calculate their EST
and EFT i.e. equal to the actual start time (AST) and actual
completion time (ACT), or we can say overall completion time
(nexit), i.e. schedule length or makespan, sometimes called
critical path length. The makespan is describe as

Makespan = max {AFT (nexit)} (7)

Node with higher need is analyzed for Scheduling before a
node with lower need. The main objective of scheduling
problem is to assigning the tasks of a given application for
execution among suitable processors and tries to minimize
the schedule length or makespan.

5. Proposed Algorithm

BGA algorithm uses HEFT algorithm strategy for
prioritization and selection. The HEFT Algorithm [8] is an
application scheduling algorithm for a limited number of
heterogeneous processors. The algorithm first builds up a
need outline of procedures and a short time later basically
perfect project decisions for each node are made on the
reason of the task's evaluated fulfillment time. Like the vast
majority of list-based scheduling algorithm it has three
stages.

Task prioritization stage

Task selection stage

Processor allocation stage

In task prioritization stage, it utilized ranku to transfer
need to the task in this phase rank is finding out according to
their priority. Ranku is the upward rank computes rank of all
tasks by using mean communication and computation cost
and then computes the priority by using sum of upward and
downward rank. In task selection stage task are arranged by
their priority of each node. Which node has highest priority,
that task must be toped in the rank list. For batter utilization
the behavior and specification should be same for e.g. large
applications are not suitable for small processor. In our
algorithm we use a fitness function which uses values at their
own choice and give a value to each node and set the priority
according to that number. In processor selection stage, the
algorithm selects the task with most important need from the
prepared list as the selected task. Also, the processor
selection stage, the algorithm selects in processor that
permits the EFT (Earliest Finish Time) of the selected task
according to their utilization of processes. However, the HEFT
algorithm uses an insertion policy that try to find to bring a
task in an earliest idle time slot between two previously listed
tasks on a processor, if the slot is large enough to hold the
task. The goal of useful Scheduling is to guide the
accomplishments onto the center processors and execution of
applications is situated so that task priority requirements are
fulfilled and minimum amount of schedule length is given.

The BGA algorithm first computes normal execution time
for every node and normal correspondence time between
edges of two dynamic nodes. That execution time of the task
is evaluated before finding the rank, in this algorithm the
scheduling priority is based on upward and downward
scheme of a task ni is defined as

Ranku(ni)=W+maxnjϵsucc(ni) (Cij)+(ranku (nj)) (8)

Cij is the edge of average communication cost of (i,j), ni is
the immediate child defined by succ (ni) computation cost is
defined by (wi). In case of calculating the rank, which starts
from exit node nexit i.e. upward rank value given below

Ranku (nexit) = (wexit) (9)

In case of evaluate the downward rank of a task ni is
recursively clear by

Rankd(ni) = maxnjϵpred(n_i) {rankd (nj)+(C(i,j))} (10)

Where set of immediate parents of task ni is pred(ni).
Traversing the task graph according to downward rank
which is starting from entry node nentry, that rank value is
equal to zero. Rankd (ni) is the critical path of the task graph,
i.e. maximum traversing time from entry node to task ni.

 The algorithm then sorts the task by diminishing request
of their rank qualities. The endeavor with higher rank worth
is given higher need. In the task determination stage, nodes
are planned by needs and every task is allocated to the asset
that can complete the undertaking at the soonest time [14].

The BGA algorithm has to be designed in such a manner
that it overcomes the problems of the algorithm and reduces
the computation and communication cost of the system. The
major problem of HEFT is prioritization which is made on the
base of the communication edge between two vertices. The

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 02 | Feb-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1996

BGA algorithm introduces a fitness function on the basis of
the computation cost as well as the positive threshold,
negative threshold, positive weight and negative weight of
the system which is explained in the pseudo code in the later
sections. There can be many different greedy strategies for
the same problem. Which one is the best usually depends on
the application. In some rare cases, analysis may also show
that a strategy is better than another one in all cases. Here
Greedy algorithm has been used.

Many algorithms obtain a solution to a problem by making
a sequence of choices. Greedy algorithms make at each point
the choice that seems best at the moment. Such heuristic
strategies do not always produce an optimal solution, but
sometimes they do. Sometimes computing an optimal
solution requires too many resources, and greedy heuristics
can provide a reasonable solution in reasonable time. There
can be many different greedy heuristics for the same
problem. The proposed algorithm enhances the HEFT
algorithm using the BGA Algorithm. The algorithm starts
when the HEFT is done with its prioritization. The main
aspects of this algorithm are as follows.

 Start

 Draw a graph G (V,E) where V is the vertex and E is the
 edge of two vertices.

 Compute ranku for all nodes traversing upward.

 Compute rank nd for all nodes by traversing downward.

 Cp=rank kd(ni) + ranku (ni) (computes the priority for
 each task)

 Initialize fitness function to minimize

∑n,e EST, EFT

 F(vi,k)={(∑vj € Ak wij+) Qj+ (∑-vj€Ak wij) Q j-}/(Qj+ + Q j-)

 While there is any unscheduled node in the queue

 If (f(vi, ki)) > If (f(vi, ki+1))

 Process the task

 Else assign If (f (vi, ki)) as max value and repeat fitness
 function computation for all tasks in the queue.

 End while

 Compute EST and EFT for deciding number of iterations.

 Find minimum of EST and EFT iteration.

 End

The above pseudo code represents the BGA algorithm
through which the optimization has been done. The
abbreviations have been provided already. Each node would
be assigned with a positive weight, a negative weight, a
positive threshold and a negative threshold. The systems
would be also assigned with positive and negative threshold
weight whose fitness function would be calculated at each
iteration. If the calculated fitness function value comes out to
be positive then, it would be assigned with the highest
priority at the first time and further on if the next value of the

fitness function is greater than that of the previous one, the
swapping would be performed that means the sorted values
would arranged in descending order. The sum of all positive
thresholds would be subtracted from the EFT and the sum of
all negative values of the fitness function would be added to
the EFT. In such a manner the following results have been
computed. And used metrics has been defined below: The
BGA algorithm searches for the best solution each and every
time the iteration takes place. The best possible solution is
always evaluated using a fitness function which has been
already described in the pseudo code. The BGA algorithm
always evaluates the results in phases in which the output of
one phase goes as the input to other phase. The phases are
generation of positive weight, generation of negative wt,
generation of positive threshold, generation of negative
threshold and evaluation of the fitness function. In figure 5.1
represents a DAG, which contains 10 nodes each node is
connected with vertices and shows us dependency between
parent nodes with child node. Parent nodes are executed
before child nodes. In DAG represent communication cost
between to edges.

Fig- 2: Scheduled Tasks on Processors

A schedule is produced shown in Fig-2 by using
communication cost and computation cost, which represent
the maximum finish time of all processes or called schedule
length ratio (SLR) or makespan.

6. Result and Discussion

In this section we present the comparative evolution of
our algorithm and compared with HEFT algorithm. Which
represent from different aspects like schedule length
according to change in result and in efficiency and their
schedule length.

6.1 Comparison Metrics: We compare algorithms by
these three metrics:

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 02 | Feb-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1997

• Speedup

The speedup value for a given graph is computed by
dividing the sequential execution time by the parallel
execution time. It is defines as:

 Speedup = minpj € Q {∑ni € V Wij} / make span

• Efficiency

It is defined as speedup divided with number of
processors in each run.

• Schedule Length Ratio

 Schedule length is the completion time of a DAG or called
makespan.

Makespan = max {AFT (nexit)}

6.2 Performance results

The performance of the BGA is compared with well known
scheduling algorithm namely HEFT algorithm for
heterogeneous system using task graphs on various
performance metrics as described previously. Different
number of graphs is generated with varying task sizes from
18 to 22. The available processor in each case was taken to
be three. Chart-1 shows that the BGA algorithm is better
than HEFT algorithm by 6.65% in term of average schedule
length (ASL). Figure 4.3 shows the BGA is better than HEFT
algorithm by 5.73% in terms of average speedup. Figure 4.4
shows the BGA gives better results as compared with HEFT
algorithm in terms of average efficiency by 4.6%. Figure 4.5
gives the improvement of BGA then HEFT algorithm in terms
of varying CCR values. It shows that schedule length
increases when number of nodes increases.

 Chart-1: ASL with respect to number of nodes

Chart-2: Average speedup with respect to number of
nodes

Chart- 3: Average efficiency with respect to number of
nodes

7. Conclusion and Future Scope

 In this paper a hybrid algorithm has been presented
called BGA which combines two algorithms namely HEFT and
BGA Algorithm for the scheduling applications graphs in
Heterogeneous processes .The advantages of HEFT have been
utilized to generate a new algorithm and the drawbacks have
been removed by BGA algorithm. The results have been
evaluated on the basis of 4 parameters namely Speed Up,
Schedule Length, Efficiency and Communication cost ratio.
The proposed algorithm shows a significant improvement in
terms of cost cutting due to highly effective designed fitness
function whose description is provided in the pseudo code
and the performance is compared with the traditional HEFT
Algorithm. The current presented work opens up a lot of
future gates for the upcoming research workers. The
proposed algorithm has not been tested with the Directed
acyclic graphs which can be a point of interest. The algorithm
has not been tested with more than 22 nodes which can be
tested. Introduction to genetic algorithm in this contrast can
also become an interesting aspect to check whether it
increases the speed up and efficiency of the system.

REFERENCES
[1] Garey, M. R. e D. S., “A Guide to the Theory of NP-Completeness”,

 W. H. Freeman & Co, New York, NY, USA , 1979.

[2] Yang, T. and Gerasoulis, “A DSC Scheduling parallel tasks on an

 unbounded number of processors”, IEEE Transaction Parallel

 Distributed System, 5(9), pp:951–967, 1994.

[3] Ilavarasan, E. and Thambidurai, “Low Complexity Performance

 Effective Task Scheduling Algorithm for Heterogeneous Computing

 Environments”, Journal of Computer Sciences 3 (2), pp: 94- 103,

 2007.

[4] Topcuoglu, H. Hariri, S. and Wu, M.Y. “Performance-effective and

 low-complexity task scheduling for heterogeneous computing”, IEEE

 Trans. Parallel Distributed System, 13(3), pp: 260–274, 2002.

[5] Adam, T. L. Chandy K. M. and Dickson J. R. “A comparison of list

 schedules for parallel processing systems”, Communication ACM,

 17(12), pp: 685–690, 1974.

[6] Kwok, Y.K. and Ahmad, I., “Benchmarking and comparison of the

 task graph scheduling algorithms”, J. Parallel Distrib. Comput, 59(3),

 pp: 381–422, 1999.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 02 | Feb-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1998

[7] Liu, G. Q. Poh, K. L. and Xie, M. “Iterative list scheduling for

 heterogeneous computing”, J. Parallel Distrib. Comput, 65(5), pp:

 654–665, 2005.

[8] J.-J. Hwang, Y.-C. Chow, F. D. Anger, and C.-Y. Lee, “Scheduling

 precedence graphs in systems with interprocessor communication

 times,” SIAM Journal on Computing, vol. 18, no. 2, pp. 244–257,

 1989.

[9] M. Y. Wu and D. D. Gajski, “Hypertool a programming aid for

 message-passing systems,” IEEE Transactions on Parallel and

 Distributed Systems, vol. 1, no. 3, pp. 330–343, 1990.

[10] G. C. Sih and E. A. Lee, “Compile-time scheduling heuristic for

 interconnection-constrained heterogeneous processor

 architectures,” IEEE Transactions on Parallel and Distributed

 Systems, vol. 4, no. 2, pp. 175–187, 1993.

[11] H. El-Rewini and T. G. Lewis, “Scheduling parallel program tasks

 onto arbitrary target machines,”Journal of Parallel and Distributed

 Computing, vol. 9, no. 2, pp. 138–153, 1990.

[12] M. Iverson, F. Özgüner, and G. Follen, “Parallelizing existing

 applications in a distributed heterogeneous environment,”

 in Proceedings of the IEEE International Conference on

 Heterogeneous Computing Workshop (HCW '95), pp. 93–100, 1995.

[13] E. Ilavarasan, P. Thambidurai, and R. Mahilmannan, “High

 performance task scheduling algorithm for heterogeneous computing

 system”, Volume 3719 of Lecture Notes in Computer Science,

 pp.193-203. Springer, 2005.

[14] Luiz F. Bittencourt, Rizos Sakellariou and Edmundo R. M. Madeira,”

 DAG Scheduling Using a Lookahead Variant of the Heterogeneous

 Earliest Finish Time Algorithm”, 18th Euromicro Conference on

 Parallel Distributed and Network-based Processing, pp. 27-34, 2010.

[15] Savina Bansal, Padam Kumar and Kuldip Singh, “Dealing with

 heterogeneity through limited duplication for scheduling precedence

 constrained task graphs”, J. Parallel Distrib. Comput, vol. 65, pp. 479

 – 491, 2005).
[16] Tomasz Kalinowski , Iskander Kort and Denis Trystram ,”List

 scheduling of general task graphs under LogP” ,Parallel Computing,

 vol.26, pp. 1109-1128, 2000.

[17] R. Eswari and S. Nickolas, “A Level-wise Priority Based Task

 Scheduling for Heterogeneous Systems” International Journal of

 Information and Education Technology, Vol. 1, No. 5, pp. 371-375,

 December 2011.

[19] Mohammad I. Daoud and Nawwaf Kharma, “A high performance

 algorithm for static task scheduling in heterogeneous distributed

 computing systems” J. Parallel Distrib. Comput, 68, pp. 399 – 409,

 2008.

[20] Samia Ijaz, Ehsan Ullah Munir, Waqas Anwar, and Wasif Nasir, “

 Efficient Scheduling Strategy for Task Graphs in Heterogeneous

 Computing Environment” The International Arab Journal of

 Information Technology, Vol. 10, No. 5, pp. 486-492, September

 2013.

