
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1702

 LAYERED FAULT TOLERANCE FOR COMPUTE CLUSTERS

A. PADMA PRIYA1, G. RAJESH KRISHNA2

12Assistant Professor, ECE dept., Nalla Malla Reddy Engineering college, Hyderabad, INDIA.
.---***---

Abstract - Clusters of message-passing computing nodes
provide high-performance platforms for distributed
applications. Cost-effective implementations of such systems
are based on commercial off-the-shelf (COTS) hardware and
software components. We present a layered approach to
providing fault tolerance for message-passing applications on
compute clusters that are based on COTS hardware
components, COTS operating systems, and a COTS application
programming interface (API) for application programmers.
This approach relies on highly-resilient cluster management
middleware (CMM) that ensures the survival of key system
services despite the failure of cluster components.

Key Words: Clusters, Commercial off-the-shelf, cluster
management middleware, Fault tolerance.

1.INTRODUCTION

Fault tolerance for high-performance distributed

applications is increasingly important due to unreliable

cluster nodes. As the number of nodes in a cluster increases,

the probability of a single node failure at a given time also

increases. Furthermore, the reliability of integrated circuits

may decrease due to shrinking feature size and lower

voltages. Clusters can also be deployed in harsh

environments, where radiation and other conditions can

cause malfunction in the hardware. Although much work has

focused on making high-performance applications fault-

tolerant, most of the work is concerned only with fail-stop

faults, in which faulty processes crash. Such faults are easy to

detect, and, given that a copy of fault-free application state

exists, easy to recover from. The goal of this work is to

enable distributed applications running on clusters to detect

and recover from process crashes, process hangs and

arbitrary faulty behavior, such as the generation of incorrect

results as shown in figure 1. All of these errors are easily

detected by replicating applications and comparing the

outputs of the replicas. However, replication imposes a great

cost—at least n times the resources required to maintain n

replicas. There exist many fault tolerance mechanisms that

enable detection and recovery from hangs and incorrect

results while using fewer resources than replication. Our

work focuses on system support needed to implement such

fault tolerance mechanisms for distributed applications. This

chapter describes in general terms what is needed to

implement fault tolerance mechanisms for distributed

applications and gives justification for implementing certain

functionality as cluster management middleware (CMM)

services. This paper firstly explains a general principle for

the greater efficiency of application-specific fault tolerance

mechanisms over fault tolerance mechanisms that work for

all applications and also describes exceptions to the

principle, leading to an implementation that involves

multiple software layers. A way that is not application

specific.

Fig -1: Typical layered architecture of cluster systems

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1703

2. END-TO-END ARGUMENTS FOR APPLICATION-

SPECIFIC FAULT TOLERANCE

The general solution for implementing application fault

tolerance is to introduce redundancy for the application’s

state. For example, check pointing is a fault tolerance

mechanism that stores copies of application state made at

specific points in time in an application’s execution. Process-

level replication is another example of a mechanism that

maintains copies of the application, where replicas of

applications are simultaneously executing. Both of these

mechanisms can be implemented in an application-

transparent way so that they work for all applications in

general, regardless of the structure of the application’s data

or the behavior of its algorithms. The cost of fault tolerance

mechanisms in terms of resource usage and performance

overhead is due mainly to the maintenance of redundant

state. The amount of state to maintain can be reduced

significantly by taking advantage of application-specific

characteristics. For example, a checkpointing mechanism

may omit committing application state that can be quickly

recomputed from the checkpointed state after rollback

recovery; a replication mechanism may use alternative

algorithms that approximate the original algorithm while

using fewer computational resources. The gain in efficiency

from using application specific characteristics for adding

redundancy comes at the cost of implementing the

mechanisms for each application or group of applications

with similar characteristics. Assuming that the gain in

efficiency outweighs the additional cost in implementation,

we can argue that all fault tolerance mechanisms should be

implemented in application-specific manner as much as

possible. Implementing application-specific fault tolerance

mechanisms is an instance of the end to-end argument in

system design [Salt84]. The argument for end-to-end design

states that certain functionality can be implemented

correctly and completely only with the knowledge of the

application running at the endpoints of a communication

system; providing the functionality as a feature of the

communication system is not possible or may be redundant.

The application of the end-to-end argument to fault

tolerance mechanisms involves what layers the mechanisms

should be implemented at and whether the mechanisms

should be specific to the applications they are supporting.

Some mechanisms such as detection of node failure operate

without any dependence on application-specific knowledge

and would offer no benefit from application-specific

knowledge. Other mechanisms benefit from application

specific knowledge, as described above. Given that it is

sometimes desirable to implement application-specific fault

tolerance mechanisms, we must consider what layers should

be involved in the implementation. In typical clusters

[Agba99] employing COTS hardware and COTS OS, there are

few facilities for the hardware or OS to easily determine

application-specific characteristics for implementing more

efficient fault tolerance mechanisms. To implement such

facilities could complicate hardware and OS for the benefit of

a few kinds of applications while incurring significant cost

for all applications. Part of this cost may involve

instrumenting OS code or adding measurement capability in

hardware to measure and analyze events at run-time that

indicate the application’s behavior. We assume that

modification of the hardware and OS to make such

characteristics visible within these layers is expensive to the

point that it negates the low-csto motivation of using

commercial off-the-shelf (COTS) hardware and COTS OS in

the first place. The remaining option is to implement

application-specific fault tolerance mechanisms in user-level

processes, involving CMM, application libraries, and the

application code. A typical CMM manages execution of

applications on a general-purpose high performance cluster

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1704

using very little knowledge of application-specific

characteristics. Application-specific procedures are

implemented in application libraries and application code in

order to keep the CMM implementation simple. However,

there are some cases where involving the CMM in

implementation of application-specific fault tolerance

mechanisms yields benefits. The next section describes these

cases.

2.1. Involving the CMM in Implementation of Fault

Tolerance Mechanisms for Applications

There are two cases where involvement of the CMM in

implementing application specific fault tolerance

mechanisms can be beneficial, even though there are no

application specific procedures implemented in the CMM.

The first case are the functions that application-specific fault

tolerance mechanisms need to perform but which must be

implemented in the CMM and OS. For example, an

application fault tolerance mechanism may need to

terminate a faulty process and spawn a new process to

replace it. The CMM manages processes on behalf of

distributed applications; permitting a potentially faulty

application to perform these tasks could impact the health of

other applications and of the cluster itself. The second case

are the functions that can be implemented more efficiently in

lower layers. For example, an OS immediately detects a

process crash whereas a distributed application must use

heartbeat messages and timeout events to detect a process

that has crashed. It is conceivable that some of the

functionality of the second case presented above could be

implemented in an application library instead of involving

the CMM. The benefit of using the CMM is that the CMM has

very high reliability requirements. As the manager of the

cluster and all applications running on the cluster, the CMM

is a critical component of the cluster and must be reliable.

When the CMM fails, the entire cluster has failed, and there is

nothing an application can do to guarantee correct execution.

In other words, applications running on a cluster implicitly

depend on the correct operation of the CMM. Adding CMM

functionality which application-specific fault tolerance

mechanisms can invoke simply makes this dependence

explicit.

2.2. CMM Services for Supporting Application Fault

Tolerance

In this section we propose a set of services to implement in

CMM in order to support fault tolerance mechanisms for

distributed applications. We consider general requirements

of fault tolerance mechanisms performing four actions: error

detection and notification, error diagnosis, error recovery,

and reconfiguration of application processes. An error is

detected when a fault tolerance mechanism concludes that

the state of the system or application is incorrect. The error

detection mechanism must notify the system or application

so that normal execution can be stopped. In error diagnosis,

fault tolerance mechanisms identify and isolate the

erroneous state. In error recovery, fault tolerance

mechanisms restore the state to be error-free. Finally, in

reconfiguration, fault tolerance mechanisms repair or

replace a faulty component so that it cannot commit more

errors in the future (unless it is stricken with another fault).

2.2.1. Error Detection and Notification

Detecting hangs and arbitrary incorrect behavior of a faulty

application process requires application-specific knowledge.

Hence, one must use application-dependent code to

implement detectors for these kinds of errors. Detecting a

process hang requires knowledge of how much time

application algorithms take to execute. Detecting missing

output, extraneous output, and incorrect output requires

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1705

knowledge of the application’s specifications regarding

correct output. Hangs and arbitrary incorrect behavior can

be detected by replicating the entire application and

comparing the outputs of the replicas; this is a special case of

application-dependent code where multiple instances of the

application code itself are executed. To keep the CMM

simple, we refrain from implementing functionality that

depend on application-specific characteristics. Therefore, we

do not implement in the CMM replication or any other

service that assists in detection of hangs and arbitrary

incorrect behavior. Crashes and hangs both result in a failure

to make progress and can be detected by application-specific

code in which application processes periodically compare

the progress of the application to the passage of time. As

mentioned earlier in this chapter, OS software already

detects process crashes. Since the OS’s detection mechanism

is event-based, in contrast to the application’s slower timer-

based mechanism, an application would respond to 37

crashes more promptly if it handled crash notifications

based on the OS’s detection. Although the single-node OS is

not able to notify processes running on other nodes of a

crash, it can notify the CMM, which in turn can notify the

remaining processes of the application. Crash notification is

therefore a useful service that CMM can implement without

knowledge of application-specific characteristics. An

application process is prematurely terminated when the

node that it is running on has failed. Since the entire node is

lost, this can only be detected by the CMM or the application

itself, portions of which are still running on other nodes. The

CMM must detect node failures using its own mechanisms

since it has to keep track of available cluster resources. Since

the CMM manages cluster resources, it has the information

regarding which nodes each application is using. Hence, it is

very simple to add to the CMM the capability of notifying the

application when one of the nodes the application is using

fails. In the above discussion we identified three sources of

error detection: the operating system, for process crashes;

the cluster manager, for node failures; and application-

specific code, for hangs and corruption of application-level

state. Once any error is detected, the distributed processes

must be notified quickly for coordination in diagnosis and

recovery.

Notification of error detection can be accomplished

through the distributed application’s message-passing

facility. However, there are several reasons to separate the

error notifications from normal messages related to the

application’s distributed computation. First, notifications of

error detection may originate from entities other than the

application itself. For example the cluster manager may

detect a failed node, or the message-passing implementation

may detect a broken connection. It would be intrusive to

modify existing application code so that these entities are

treated as communication endpoints on the same level as the

application’s processes. Second, an error notification should

be handled as soon as possible in order to prevent the

spreading of corrupted state through message-passing. In

particular, processes must be able to handle such

notifications even if they arrive while the process is blocked.

For example, a fault-free process expecting to receive a

message from a sender may be blocked in a blocking

message receive operation at the time of the error. The error

may have affected the sender such that it fails to send the

message that the receiver expects. The fault-free receiver in

the blocking operation must be interrupted by the error

notification so that it can execute diagnosis and recovery

mechanisms. The above discussion leads us to a solution

whereby the CMM provides a reliable asynchronous

communication service for distributing error notifications.

The service enable communication between the cluster

manager and the application, and it enables one application

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1706

process to interrupt other application processes, even if they

are blocked in message-passing operations.

2.2.2. Diagnosis

Diagnosis is the process of identifying the faulty components

in a system. For a distributed application, the ‘‘components’’

are the individual processes. Hence, one way diagnosis can

be implemented by applications is for application processes

to perform system level diagnosis [Prep67], where the

processes of the application test each other. Producing a

correct diagnosis in a distributed system is complex because

faulty components can fail to send messages they are

supposed to send, send more messages than they are

supposed to send, or send incorrect messages. With a fault-

tolerant CMM, the cluster manager is a reliable and trusted

entity that can potentially simplify the diagnosis process. For

example, the reliable trusted central cluster manager can

provide a very simple mechanism for identifying a majority

vote among diagnoses produced by the application processes

and transmitting the results to all fault-free processes.

2.2.3. Error Recovery

There are two ways to restore error-free state: rollback

recovery and roll-forward recovery. In rollback error

recovery, [Camp86] an earlier error-free state of the

application, is restored, and computation resumes from that

earlier state. The end-to-end argument applies to rollback

because the application programmer has the most

awareness about what application state is critical for correct

rollback and at what points in the execution such state

should be committed to reliable storage. In roll-forward

error recovery, the application replaces its erroneous state

with newly created correct state and continues execution.

The new correct state may not have been reached in the past,

and it may also not have been reached had there been no

error. Knowing how to create a correct state involves

application-specific knowledge, so the end-to-end argument

applies to the implementation of roll-forward recovery.

2.2.4. Reconfiguration of Application Processes

Reconfiguration consists of actions taken to prevent a faulty

component from causing another error. In terms of

processes of a distributed application, reconfiguration may

involve removal of processes diagnosed to be faulty, and

replacement of faulty processes with fault free processes.

The CMM manages processes on behalf of applications to

maintain the health of the cluster and to prevent an

application from interfering with the processes of another

application. Therefore, implementing reconfiguration of

application processes must involve communication between

the application and the CMM.

2.3. A Set of CMM Services for Supporting

Application Fault Tolerance

This paper explains why some functionality related to

application fault tolerance can be easily implemented in the

CMM, beneath the application layer, while other functionality

are best left to the application-specific code for

implementation. To keep CMM algorithms simple and

reliable, we avoid introducing application-specific routines

to the CMM. Instead, in defining a set of services to add to the

CMM we consider only functions that must be implemented

by the CMM and functions that are more efficiently

implemented by the CMM and system software. We propose

in this chapter the following set of CMM services that can be

implemented to support application fault tolerance:

 (1) An asynchronous communication facility enabling

communication between applications and the cluster

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1707

manager and enabling interruption of application processes

for error notification.

 (2) Error detection for prematurely terminated processes

due to crashes and node failures.

 (3) A reliable voting service.

 (4) A service to terminate an application process and

(5) A service to spawn an application process.

3. CONCLUSION

Fault-tolerance is achieved by applying a set of analysis and

design techniques to create systems with dramatically

improved dependability. As new technologies are developed

and new applications arise, new fault-tolerance approaches

are also needed. In the early days of fault-tolerant

computing, it was possible to craft specific hardware and

software solutions from the ground up, but now chips

contain complex, highly-integrated functions, and hardware

and software must be crafted to meet a variety of standards

to be economically viable. Thus a great deal of current

research focuses on implementing fault tolerance using COTS

(Commercial-Off-The-Shelf) technology. Another area is the

use of application-based fault-tolerance techniques to detect

errors in high performance parallel processors. Fault-

tolerance techniques are expected to become increasingly

important in deep sub-micron VLSI devices to combat

increasing noise problems and improve yield by tolerating

defects that are likely to occur on very large, complex chips.

5. REFERENCES

1. [Agba99] A. M. Agbaria and R. Friedman, ‘‘Starfish: fault-

tolerant dynamic MPI programs on clusters of

workstations,’’ 8th International Symposium on

HighPerformance Distributed Computing, pp.167-176

(1999).

2. [Salt84]- J. H. Saltzer, D. P. Reed, and D. D. Clark, ‘‘End-to-

end arguments in system design,’’ ACM Transactions on

Computer Systems, vol.2, no.4, pp.277-288 (November

1984).

3. [Prep67] F. P. Preparata, G. Metze, and R. T. Chien, ‘‘On

the Connection Assignment Problem of Diagnosable

Systems,’’ IEEE Transactions on Electronic Computers,

vol.16, no.6, pp.848-854 (Decemeber 1967).

4. [Camp86] R. H. Campbell and B. Randell, ‘‘Error recovery

in asynchronous systems,’’IEEE Transactions on Software

Engineering, vol.SE-12, no.8, pp.811-826 (1986).

BIOGRAPHIES

 A. Padma Priya presently holds the position

of Assistant Professor in the department of

Electronics and Communication

Engineering at Nalla Malla Reddy

Engineering College ,Hyderabad. I obtained

B.Tech degree in the stream of Electronics

and Communication Engineering from

D.M.S S.V.H College of Engineering,

Machilipatnam in 2008, M.Tech degree in

the stream of VLSI & E.S from Sasi Institute

of Engineering &Technology,

Tadepalligudem in 2011. I published

various papers in National and

International Conferences .My current

research interests are CPLD, Standard cells

and Low power VLSI.

G.Rajesh Krishna presently holds the

position of Assistant Professor in the

department of Electronics and

Communication Engineering at Nalla Malla

Reddy Engineering College, Hyderabad. I

obtained my Bachelors of Technology in

Electronics and Communication Engineering

from Alfa college of Engineering and

Technology, Affiliated to JNTU, Anantapur in

2009,Master of Technology in Digital

Systems and Computer Electronics from

Rajeev Gandhi Memorial college of

Engineering and Technology, Affiliated to

JNTU, Anantapur in 2011.I published various

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1708

papers in International Journal of

Engineering and Science Research .My

current research interest are Wireless

Communications, Image Processing & Low

Power VLSI.

