
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1612

Overview of an Adaptive Filter Using Distributed Arithmetic

With Offset Binary Coding

R.Swathi, S.Janani Sri, S.Deebika

Assistant Professor, Department of Instrumentation and Control Engineering, Sri Krishna College of Technology,
TamilNadu, India.

Assistant Professor, Department of Instrumentation and Control Engineering, Sri Krishna College of Technology,
TamilNadu, India.

Assistant Professor, Department of Instrumentation and Control Engineering, Sri Krishna College of Technology,
TamilNadu, India.

---***---
Abstract - Adaptive filters are used in many DSP
(Digital Signal Processing) applications. High-
throughput, low-area and low-power are the key aspects
in VLSI design. Distributed Arithmetic (DA) which is used
in the existing design results in high memory
requirements due to high size memory based Look Up
Table (LUT). So in this paper, Distributed Arithmetic
(DA) with Offset Binary Coding (OBC) technique is used
to reduce the memory based LUT size into half. An
architecture which is pipelined, considered here to get
high-throughput, low-area and low-power. LUT
updating and the implementation of filtering and weight
updating will results in high-throughput. Carry save
accumulation is used to reduce the complexity of the
area. In order to reduce the power consumption fast bit
clock is used in the carry save accumulation. DA
techniques with OBC consists of the Same number of
adders, multiplexors, smaller size LUT are required when
compared to the existing design.

Key Words: Adaptive filter, Distributed Arithmetic (DA),
Offset Binary Coding (OBC), Least mean square (LMS)
algorithm.

1. INTRODUCTION

 Digital signal processing (DSP) is the mathematical
manipulation of an information signal to modify or improve
it in some way. Adaptive filters are widely used in several
digital signal processing (DSP) applications. An adaptive
filter is a computational device that attempts to model the
relationship between two signals in real time in an iterative
manner. An adaptive filter is a system with a linear filter that
has a transfer function controlled by variable parameters
and a means to adjust those parameters according to an
optimization algorithm. An adaptive filters whose weights
are updated by the famous Widrow-Hoff least mean square

(LMS) algorithm is the most popularly used only due to its
simplicity but also due to its satisfactory convergence
performance. Adaptive filters are used in echo cancellation,
inverse modelling, signal de-noising, channel equalization for
communication and networking. Multiplierless Distributed
Arithmetic is used to compute the inner product between the
fixed and variable vector. But DA requires more memory
since the LUT size is more. So, DA with OBC is used to
overcome the high memory requirement by reducing the
LUT size using the factor 2N to 2N-1.

2. LEAST MEAN SQUARE ALGORITHM

 Least mean squares (LMS) algorithms are used to
mimic a desired filter by finding the filter coefficients that
relate to producing the least mean squares of the error
signal (difference between the desired and the actual
signal). It is a stochastic gradient descent method in that
the filter is only adapted based on the error at the current
time. LMS algorithm is used to computes the output of the
filter and an error signal value. Error signal value is the
difference between the current output of the filter y(n)
and the desired output of the filter d(n). The weights W(n)
of LMS adaptive filters are updated according to the
following equations,

W (n+1) = W (n) + µ e(n) x(n) (1)

e(n) = d(n) – y(n) (2)

y(n) = WT(n) x(n) (3)

3. OFFSET BINARY CODING

 Offset binary coding is often used in adaptive filters of the
digital signal processing (DSP). Offset binary is also referred
to as excess-K, which is a digital coding method, where all-
zero corresponds to the minimal negative value and all-one to
the maximal positive value. Offset binary coding (OBC) is

http://en.wikipedia.org/wiki/Digital_signal_processing
http://en.wikipedia.org/wiki/Integer_overflow

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1613

used with Distributed Arithmetic (DA) which is used to
reduce LUT size into half. There is no standard for offset
binary, but most often the offset K for an n-bit binary word is
K=2(n-1). This has the consequence that the "zero" value is
represented by a 1 in the most significant bit and zero in all
other bits, and in general the effect is conveniently the same
as using two's complement except that the most significant
bit is inverted. It also has the consequence that in a logical
comparison operation, one gets the same result as with a
two's complement numerical comparison operation,
whereas, in two's complement notation a logical comparison
will agree with two's complement numerical comparison
operation if and only if the numbers being compared have the
same sign. Otherwise the sense of the comparison will be
inverted, with all negative values being taken as being larger
than all positive values.

 Table-1: OBC LUT contents with 2N-1 words

X0j X1j X2j X3j LUT CONTENTS

0

0

0

0

0

0

0

0

1

1

1

1

1

1

1

1

0

0

0

0

1

1

1

1

0

0

0

0

1

1

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

0

1

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

0

1

-(h0+h1+h2+h3)/2

- (h0+h1+h2-h3)/2

- (h0+h1-h2+h3)/2

- (h0+h1-h2-h3)/2

- (h0-h1+h2+h3)/2

- (h0-h1+h2-h3)/2

- (h0-h1-h2+h3)/2

- (h0-h1-h2-h3)/2

(h0-h1-h2-h3)/2

(h0-h1-h2+h3)/2

(h0-h1+h2-h3)/2

(h0-h1+h2+h3)/2

(h0+h1-h2-h3)/2

(h0+h1-h2+h3)/2

(h0+h1+h2-h3)/2

(h0+h1+h2+h3)/2

Table 1 shows the reduced ROM based LUT size. The LUT size
is reduced to half.

3.1. DERIVATION OF OFFSET BINARY CODING

 Let the Inner product be represented by,

 y = xi
N
i wi

1
0 (1)

 Two’s complement representation,

 xi ═ xko +

1
1

M
j xkj

 2
j

 (2)

 xi ═ xixi
2

1
 (3)

 ─ xi ═ ─ xko +

1
1

M
j kjx 22

)1(Mj
 (4)

 Substituting (2) and (4) in (3)

xi ═

1
1

)1(
22

2

1 M
j

Mj
kjkjkoko xxxx

 consider dkj as xx kjko equation (1) becomes,

 y ═
 22

2

)1(1
10

 NjN

j kjko
N
i dd

wk
 (5)

 y ═ 2
22

1
1 00

jN
j

N
k

kjkN
k

kok dwdw

 2
2

)1(
0

 NN

k
kw

 (6)

 equation (6) can be rewritten as,

 y ═ ─ 22
)1(

1
1

1

 N
N

jN
j jO FFF (7)

 Figure-1 DA based OBC implementation

Figure1.shows the implementation of DA based OBC. Again
computation starts from LSB of xi, i.e., j=0. The XOR gates are
used for address decoding, the MUX with constant D0
provides the initial value to the shift – accumulator and the
MUX after the ROM is used to inverse the output of ROM
when j=k-1. Two control signal s1 and s2 are required, where
s1 is 1 when j = k-1 and 0 otherwise, and s2 is 1 when j = 0
and 0 otherwise. Instead of this shift-accumulator carry-save
accumulation is used to reduce the complexity. Fast bit clock

http://en.wikipedia.org/wiki/Two%27s_complement

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1614

is used in the carry save accumulation to reduce the power
consumption.

4. LITERATURE SURVEY

 LMS adaptive filters using distributed arithmetic
for high throughput

In this paper, DA uses bit-serial operations and LUTs.
Only one cycle per bit is used to get high throughput.
MAC operation is very common in all Digital Signal
Processing Algorithms. The “basic” Distributed
Arithmetic technique is bit-serial in nature. DA is
basically a bit-level rearrangement of the multiply and
accumulate operation. Distributed Arithmetic hides the
explicit multiplications by ROM look-ups an efficient
technique to implement on Field Programmable Gate
Arrays (FPGAs). Distributed Arithmetic is used for
computing the inner products between a fixed and a
variable data vector. In Distributed Arithmetic, the partial
products are pre computed and stored in the memory
based LUT. Conventional Distributed Arithmetic (DA) is
popular in ASIC design and it features on-chip ROM to
achieve high speed and regularity. LUT stores the filter
coefficients and the partial products are given as its
output. LUT should be recalculated for each adaptation in
adaptive filters. LUT with special addressing is used. DA
is a method often eliminates the use of multipliers. High
throughput is obtained. Throughput improves the low
power consumption by decreasing the speed of the clock.
In this paper we can notice the importance of DA-based
LMS adaptive filters (DAAF) which retains high
throughput compared to MMAF (MAC based LMS
adaptive filter). Also explains about the DA-LUT[n]
updating from DA-LUT [n-1]. In this updating 0 in LSB of
LUT [N] is mapped to 0 in MSB of [n-1]. Since DA is used
memory requirements is more due the ROM based LUT.

Two high-performance adaptive filter
implementation schemes using DA

 In this paper DA is used for vector-vector multiplication
with a direct application for implementation of
convolution which is necessary in digital filters. Two
proposed schemes are introduced to store the delayed
input samples. The first scheme explains the how the DA
stores the sum of weights (coefficients) in the LUTs and
uses inputs as addresses. This scheme is well suited for
non adaptive filters with constant coefficients. Memory
requirements are more in this scheme.The second
scheme is OBC (offset binary coding) scheme which are
used to reduce the number of LUT entries to reduce the
size of the LUT. The LUT size is reduced to its half. So the
memory requirements are less in this scheme.

 From this paper updating of the weights from t=n to
t=n+1 is studied. OBC implementation from DA can also

be known with delayed input samples. In this design, low
latency and memory requirements improvement are
obtained. No use of auxiliary LUT. In the first scheme,
exactly the memory usage is half when compared to the
previous paper. In the second scheme, memory usage is
30% less is required when compared to the previous
paper. But the second proposed scheme requires more
addition operations than the first scheme.

High throughput pipelined realization of adaptive
FIR filters based on distributed arithmetic

In this paper, carry-save adder with an efficient
architecture for high speed based on DA is used to
improve the throughput ant to reduce the area-
complexity. The proposed design does not require LUT
instead half the registers are used to store the different
input samples sum. LMS algorithm is used as a
optimization algorithm to update weight in an adaptive
filters. LUT stores the weight coefficients and the input
samples which are given as address. Registers are used
instead of D-flip flop. Area-complexity becomes less in
this proposed design when compared to the previous
paper. Sampling period becomes high in this design. This
proposed design17% more hardware is required. High
throughput and less energy are obtained. Limited
registers are used.

Conjugate Distributed Arithmetic Adaptive FIR
Filters and their hardware implementation

In this paper, a new hardware architecture using
conjugate distributed arithmetic (CDA) which is suitable
for high throughput hardware implementations of LMS
adaptive filters is presented. Unlike a traditional
distributed arithmetic (DA) implementation where all
possible combination sums of the filter coefficients are
stored in a look-up-table (LUT), in the CDA architecture,
all possible combination sums of the input signal samples
are stored in the LUT and updated at the arrival of every
sample using an efficient update procedure. The design of
CDA adaptive filters and that the practical
implementations of CDA adaptive filters which have very
high throughput relative to multiply and accumulate
architectures were described. Also this design shows that
CDA adaptive filters have a potential area and power
consumption advantage over DSP microprocessor
architectures for a given throughput. Many multiply and
accumulate units can be used which results in increased
complexity and chip area. Power consumption is also
becomes high. But throughput is improved in this
proposed design.

Low-power, high-throughput, low-area adaptive filter
based on Distributed Arithmetic

In this paper, a novel pipelined architecture for low-
power, high-throughput, and low-area implementation of

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1615

adaptive filter based on distributed arithmetic (DA). An
efficient technique for calculating the sum of products or
vector dot product or inner product or multiply and
accumulate (MAC). MAC operation is very common in all
Digital Signal Processing Algorithms. The “basic”
Distributed Arithmetic technique is bit-serial in nature.
DA is basically a bit-level rearrangement of the multiply
and accumulate operation. Throughput rate is increased
by a parallel lookup table (LUT) update. Throughput is
also achieved by concurrent implementation of filtering
and weight-updating. Conventional adder-based shift-
accumulation is replaced by a conditional carry-save
accumulation of signed partial inner-products to reduce
the sampling period. The bit-cycle period amounts to
memory access time plus one bit full-adder time (instead
of ripple carry addition time) by carry-save
accumulation. The use of proposed signed carry-save
accumulation also helps to reduce the area-complexity of
proposed design. Reduction of power-consumption is
achieved by using fast bit-clock for carry-save
accumulation but much slower clock for all other
operations. The existing designs require an auxiliary
control unit for address generation, which is not required
in the proposed structure. The inner product
computation can be calculated in L cycles of shift-
accumulation followed by LUT-read operations.

 5. CONCLUSIONS

With the advancement in VLSI design for Digital Signal
Processing (DSP) applications high-throughput, low-
power, low-area are very important parameters. An
efficient architecture is considered which is based on
Distributed Arithmetic (DA) with Offset Binary Coding
(OBC) to attain those parameters. OBC technique is used
to reduce the ROM based LUT size. So the memory
requirement is less since the LUT size is reduced by the
factor 2N to 2N-1. The size is reduced to half, other half is
obtained by changing the signs. Thus the less memory
leads to small number of long inner products.
Throughput rate is increased by LUT updates. Carry save
accumulation is used instead of basic shift-accumulation
in order to reduce the complexity. Unlike the existing
design, the memory usage is 30% less. So the use of OBC
leads to low computational cost. High-throughput, low
power consumption, low area-complexity are obtained
when compared to the earlier designs.

REFERENCES

[1] S.Haykin and B.Widrow, Least-mean-square adaptive
filters. Wiley-Interscience, Hoboken, NJ, 2003.

[2] S. A. White, “Applications of the distributed arithmetic
to digital signal processing: A tutorial review,” IEEE
ASSP Magazine, vol. 6, no. 3, pp. 5–19, Jul. 1989.

[3] D. J. Allred, H. Yoo, V. Krishnan, W. Huang, and D. V.
Anderson, “LMS adaptive filters using distributed
arithmetic for high throughput,” IEEE Transactions on
Circuits and Systems I: Regular Papers, vol. 52, no. 7,
pp. 1327–1337, Jul. 2005.

[4] R. Guo and L. S. DeBrunner, “Two high-performance
adaptive filter implementation schemes using
distributed arithmetic,” IEEE Transactions on Circuits
and Systems-II: Express Briefs, vol. 58, no. 9, pp. 600–
604, Sep. 2011.

[5] “A novel adaptive filter implementation scheme using
distributed arithmetic,” in Asilomar Conference on
Signals, Systems and Computers, Nov. 2011, pp. 160–
164.

[6] P. K. Meher and S. Y. Park, “High-throughput pipelined
realization of adaptive FIR filter based on distributed
arithmetic,” in IFIP/IEEE International Conference on
Very Large Scale Integration, Oct. 2011. pp. 428–433.

[7] W.Huang, V.Krishnan and D.V.Anderson, “Conjugate
distributed arithmetic FIR filters and their hardware
implementation,” IEEE international Midwest
symposium, 2006, vol.2, pp. 295-299.

[8] W.Huang and D.V.Anderson, “Adaptive filters using
modified sliding-block distributed arithmetic with
offset binary coding,” IEEE international conference,
2009, pp. 545-548.

[9] Sang Yoon Park and P.K.Meher, “Low-power, high-
throughput, and low-area adaptive FIR filter based on
distributed arithmetic,” IEEE Transactions on Circuits
and systems II, vol. 60, pp. 346-350.

