
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1208

Reverse Sequencing based Genome Sequence using Lossless

Compression Algorithm

Rajesh Mukherjee 1, Subhrajyoti Mandal 2, Bijoy Mandal 1

1 Dept. of CSE, NSHM Knowledge Campus, Durgapur, WB, India

2 Datamatics Global Services Ltd, Bangalore, India

---***---
Abstract - Genome sequence based on reversed

sequencing is a lossless compression algorithm. We will
introduce a DNA compression algorithm, founded on exact
reverse matching which gives the best compression results on
standard DNA sequences benchmark. In an immensely long
DNA sequence, searching of all exact reverses is non-trivial
task. To find approximate reverses optimal for compression,
this algorithm takes a long time (essentially a quadratic time
search or even more). Also, obtaining high speed and best
compression ratio is a challenging task. Proposed DNA
sequences compression achieves a better compression ratio and
runs significantly faster than any existing compression
program for benchmark DNA sequences, simultaneously.

Key Words: lossless compression algorithm, encoding,

decoding, palindrome, DNA sequences, ASCII character

1. INTRODUCTION

Adenine, Cytosine, Guanine and Thymine are the four
bases found in DNA. Those are abbreviated as A, C, G, T
respectively. DNA sequencing is finding the order of
DNA nucleotides or bases, i.e. in a genome, the order of
As, Cs, Gs, Ts that make up an organism DNA.
Sequencing the genome is an important step towards
understanding it. The importance of genome sequence
is that, a genome sequence does contain some clues
about where genes are. These clues are useful for
interpretation. The human genome is made up of over
3 billion of these nucleotides. The human genome is
about 20-40 percent repetitive DNA, but bacterial and
viral genomes contain almost no repetition [1].

 With the completion of the human genome
project, an enormous quantity of different genome
sequences becoming available, whose size varies in the
range of millions to billions of nucleotides. In both
scientific and commercial communities there is an
intensive activity targeted at sequencing the DNA of
many species and studying the variability of DNA
between individuals of the same species, which
produces huge amounts of information that need to be
stored and communicated to a large number of people.
Therefore, there is a great need for fast and efficient

compression of DNA sequences [2]. From the
viewpoint of information science; we can use
compression techniques to capture the properties of
DNA sequences. It is known that DNA sequences have
two characteristic structures. One is reverse
complements and the other is approximate repeats.
The reverse complement of a sequence is a reverse
sequence whose each symbol is replaced with its
complement one. The approximate repeats are repeats
that contain errors. There have been developed several
special-purpose compression algorithms for DNA
sequences have been developed (Grumbach and Tahi
[3], Chen, Kwong and Li [4], Lanctot, Li and Yang [5]).
These algorithms use the structures and can achieve
high compression ratio.

 Now, it is known that DNA macromolecule
comprises of two strands: Coding strand and Non-
coding strand. The coding region contains the
information (digital code) for synthesizing proteins.
Only about ten percent of genetic material of Human
beings contains coding region i.e. genes. The rest is
considered to be non-coding. Non-coding strand of
DNA does not carry any information necessary to make
proteins [6]. Therefore, the compression ratio of coding
and non-coding regions of DNA sequence must be
different and the two regions should have different
information theoretical entropy. This is supported by a
biological hypothesis (Lanctot, Li and Yang [5]). From
these scenarios, one fundamental question should be
raised about the nature of the DNA sequence, i.e
random or nonrandom. Unfortunately the compression
of genetic sequences happens to be a very difficult task.
They are at a glance, very similar to random strings and
have only very hidden regularities. The classical
algorithms like compact and compress from Unix and
the text compression algorithm provided in [Nel 91] [6]
namely static and adaptive Huffman’s encodings, static
and adaptive arithmetic encoding including higher
order encodings and various substitution algorithms
based on Ziv and Lempels methods for the text
compression, fail to compress genetic sequences.
Rather they extend the contents of the sequences,
leading to negative compression rates [6].

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1209

Life represents order. It is not chaotic or random
[7]. Thus, we expect the DNA sequences that encode
Life as nonrandom. Naturally they should be very
compressible. There are also strong biological
evidences in supporting this claim: It is well-known
that DNA sequences, especially in higher eukaryotes,
contain many repeats. It is also established that many
essential genes (like rRNAs) have many copies. It is
believed that there are only about a thousand basic
protein folding patterns. Further it has been
conjectured that genes duplicate themselves
sometimes for evolutionary or simply for "selfish"
purposes. These all concretely support that the DNA
sequences should be reasonably compressible. It is well
recognized that the compression of DNA sequences is a
very difficult task [7, 8, 9, 10]. DNA sequences only
consist of 4 nucleotide bases (a, c, g, t). It has to noted
that t is replaced with u in the case of the RNA. 2 bits
are enough to store each base. However, if one applies
standard compression software such as the Unix
"compress" and "compact" or the MS-DOS archive
programs "pkzip" and "arj", they all expand the file
with more than 2 bits per base, although all these
compression software are universal compression
algorithms. These software are designed for text
compression [11], while the regularities in DNA
sequences are much subtler due to the characteristic
structures of DNA such as palindromes, approximate
repetition, reverse substring etc. It is our purpose to
study such subtleties in DNA sequences. Most of the
DNA compression methods fall into two categories.
First is statistical method, which compresses data by
replacing a more popular symbol to a shorter code.
Second is dictionary-based scheme, which compresses
data by replacing long sequences by short pointer
information to the same sequences in a dictionary [12].

In statistical methods, arithmetic coding and CTW
are known to compress the DNA data well [13].
However, they have disadvantages such as low
decompression speed. Also, Huffman coding cannot
compress efficiently [14]. For dictionary-based
methods, LZ77 scheme is known to be the best method
for compressing DNA data so far. Several DNA-oriented
algorithms have been tried to make the best of the
characteristics of DNA, such as reverse complement
and point mutation in order to apply LZ77 scheme
more efficiently [15]. Proposed algorithm consists of
two phases:

One is find all exact reverses and other is encoding
exact reverse regions and non-reverse regions. We
have developed for fast and sensitive homology search
[16], as our exact reverse search engine. Compression
of DNA sequences is a very challenging task. This can
be seen by the fact that no commercial file-

compression program achieves any compression on
benchmark DNA sequences we use in this paper.
Several compression algorithms specialized for DNA
sequences have been developed in earlier studies
elsewhere.

We will present a DNA compression algorithm, based
on reverse substring and corresponding reverse
original substring is placed in Library file. This reverse
original substring creates a dynamic Look Up Table and
place ASCII character in appropriate places on source
file that gives the best compression results on standard
benchmark DNA sequences. We will discuss details of
the algorithm, provide experimental results and
compare the results with the one most effective
compression algorithm for DNA sequence (gzip-9). We
find the compression ratio, compression rate result in
other orientation such as the reverse (means the
substring is reverse and find the exact reverse in
normal sequences), the complement and the reverse
complement the input sequences. Also we can find the
compression rate, compression ratio of randomly
generated equivalent length of artificial DNA sequence.
Compare all the results to each other.

In this paper, if not otherwise mentioned, we will
use lower case letters u, v, to denote finite strings over
the alphabet (a, c, g, t},|u| denotes the length of u, the
number of characters in u. Uj is the i-th character of u.
Uj:j is the original substring of u from position i to
position j. The first character of u is ul .Thus u = u| : |u|-
i. and |v| denotes the length of v, the number of
characters in v. vi is the i-th character of v. vi:j is the
reverse substring of v from position i to position j. ui:j
match with vi:j. The first character of v is v1. Thus v =
v1 : |v|-i. The minimum different between u-v is of
substring length. The reverse substring found if ui:j =
vi:j and count exact maximum reverse of ui:j We use ε
to denote empty string and ε=0. Also we can say that
transpose of u is v. In reversible substring found if u=v
all cases. Place u in the library file. It is quite pertinent
to mention that, if original substring are repeated in
this the sequence, in that situation we cannot provide
any corresponding ASCII code for repeating the
substrings, just we can place the substring base pair in
output file. So, the output file size relatively increases.

2. METHODS

2.1 File format

We will begin discussing file type as text file (file
extension is dot txt) contain a series of successive four
base pairs (a, t, g and c) and end with blank space

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1210

ahead the end of file. Text file is the basic element to
which we consider compression and decompression.
The output file also the text file, contains the
information of both unmatch four base pairs and a
coded value of ASCII character. The coded valued are
located in the encoded section. The coded information
is written into destination file byte by byte. The file size
depends on number of base pair present in the input
file and output file measured by byte, i.e. File size (in
byte)= number of base pair in a file (in byte). As for
example total number of base pair in a file is n, so the
file size is n bytes. ASCII character is also required one
byte for storing. On the basis of ASCII code availability,
we can take input as a lower case letter of a, t, g and c.

2.2 Generating the substring from input sequence

1 23 4 5 6 7 8 9 1011 12…………n

a t g g t a g t a a t gtacatg ………….nn

 ggt(w3)[3-5]

 tgg(w2)[2-4]

Fig.-I: Substring creation both in normal substring,
reverse substring.

From the pictorial representation of fig-1 it is clear
that for ith substring W;. i, is the starting position of the
substring and j= (i-1) + 1, is end position of the
substring; where 1 is the substring length.

2.3 Example

As for example if substring length is 3 then:

W1 starting position (i)=l and (end position)j= (1-1)

+ 3=3,

W2 starting position (i)=2 and (end position)j= (2-

1) + 3=4 and

W3 starting position (i)=3 and (end position)j= (3-

1) + 3=5 and so on.

The substring length is less than 3 (three) has no
importance in matching context therefore we consider

the substring size in the range: 3 < 1 < n.

Therefore, the range for i and j are as 1 < i < n-1+1 and 1
< j <n respectively.

2.4 Searching for exact reverse substring

Consider a finite sequence s over the DNA alphabet
{a, c, g, t}. An exact reverse is a substring in s that can
be transformed from another substring in s with edit
operations (reverse, insertion). We only encode those
exact reverses that provide profits on overall
compression. This method of compression is as shown
below:

1. Run the program and output all exact reverses
into a list s in the order of descending scores;

2. Extract a reversible r with highest score from list
s, then replace all r by corresponding ASCII code into
another reverse list o and place original substring
corresponding ASCII code in library file.

3. Process each reversible in s so that there is no
overlap with the extracted reversible r;

4. Go to step 2 if the highest score of reversible in s
is still higher than a pre-defined threshold; otherwise
exit.

2.5 Example

Let s=atggtagtagtagtaggttgg........n

{atg substring match with four places of reversible
substring (gta), tgg substring match with one place

on reverse substring (ggt), ggt substring match with
one place on reverse substring (tgg) and so on.

First replaced highest match score of original
substring relating all reversible atg substring by ASCII

Character and insert ASCII equivalent symbol in ith
position and original substring encoded by
corresponding ASCII code.

B-atg!!!!ggttgg { B is intermediate encoding step}

o=atg!!!!ggt#[where o is the compress output file]

All those extracted repeats in list B then parse a
DNA sequence into a mixture of regions with little
structure and reverse regions each of which can be
replaced by a substring previously located.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1211

2.6 Encoding procedure

An exact reverse can be presented as two kinds of
triples, first is (I, m, p), where I means the original
substring length and 1 reversible substring length, m
and p show the starting positions of two substrings,
second replace : this operation is expressed as (r; p;
char) which means replacing the exact reversible r
substring at position p by ASCII character char.

In order to recover an exact reverse correctly the
following information must be encoded in the output
data stream.

2.7 Encoding Analysis

We can write s= atggtagtagtagtaggttgg........n n>0
and l<i<n-l+l.

Consider the sequence is defined by s, consider
substring store in S[m] and all reversible substring are
store in S[p].

After breaking the sequence(s) into substring of
three bases long we can get the result as below. So, we
can get an original substring S[m]=S[l]........S[n-2*H-l]
l<m<n-2*l+l and Reversible substrings are
S[p]=S[l]......S[n-l+l] l<p<n-I+l.

If the number of substring in S[m], total number of
substring are generated by (n-2*l+l) and number of
mach reversible substring in S[p], total match
reversible substrings are (n-1+1)

As per above example s[m]— *s[l]=atg and so on
and s[p] — »s[l]=gta and so on.

This substring method requires reducing the
complexity of the programmed execution.

2.8 Each original substring match with all other
reversible substring for finding the exact maximum

reversible substring

Match condition occur if S[m]=S[p] p=l+l

Step- I

S[l] match with S[p] to S[n-l+l] and count S[l]

{As for example S[l]=atg where substring size=3

and S[4]=gta, S[5]=gta....S[19]=tgg

So, S[l] substring match at 4 places

Then m and p incremented by one

Step- 2

Match S[2] match with S[p] to S[n-l+l] and count
S[2]

[As for example S[2]=tgg

and S[5]=tag, S[6]=agt

Sc . S[2] substring match at one places

Then m and p incremented by one

Step- 3

This method will continue to S[n-l+l]

So S[n-2*l+l] match with S[p] to S[n-2*l+l] and count
S[n-2*l+l]

So, S[n-2*L+l] reverse only one place if mach occur.

Step -4

 Store all reverse count in descending order and find
all exact maximum reverse count

Step - 5

Replace exact maximum reversible substring by
corresponding ASCII code and place original

substring in library file by his corresponding ASCII
code, and create a on-line Look Up Table.

Step- 6

Repeat Step-1 to step-5 excluding ASCII code

Step- 7

If the highest score of reverses in s is still higher
than a pre-defined threshold; otherwise exit.

As per above example: Now we find maximum
reverse probability. This substring is replaced first.

Here, we can get S[l] = (atg) original substring
reversible (gta) substring match 3 times in this

sequence.

This original substring is placed in Look Up Table,
encoding corresponding ASCII character [32(

space)] and replace all reversible substrings by
ASCII character (54).

So, n=Length of the string = Total number of base
pairs in s = File size in byte

The Encoding procedure follow this rule and
produce compression output file.

S[m] match with S[p] to S[n-l+l], place ASCII
character in the output file in the ith position. Each
match cases the value of p is incremented by;

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1212

p=number of unmatch character+ (number of
reverse

substring match * substring length +1)

Otherwise S[m]^S[p] to S[n-l+l] place base pairs in
output file in the ith position. If unmatch occurs, the
values of m and p are incremented by one.

At the end, we can get the compressed output file o
which contains the unmatch a, t, g and c and ASCII
character set.

At the end we can get the compressed file,
corresponding input sequence.

So, o= atg !!!!ggt#..........ni where m is the length of
output file. Output file size is ni byte. And library file
:atg ! ggt #

2.9 Decoding procedure

Decoding time first requires on-line Library file,
which was created at the time of encoding the input

file. On this particular value , the encoded input
string is decoded and produce the output original file.

2.10 Look Up Table

O= atg !!!! ggt#.............ni where ni is the length of
output string (n>n]).

At the time of decoding each ASCII character is
replaced by corresponding base pair i,e O[M]=L[k]
where O[M] is defined by output sequence and L[k] is
defined by library file substring. If match occurs in
between L[k]; L[32] to L[53] with O[M]; O[54] to
O[256], place ASCII equivalent substring in the ith
places in output file. The value of M is incremented by
one. If no match found in between L[54] to L[256] with
k[32], place base pair in the ith position in output file.
The value of k is incremented by one.

This process will continue until M—m position will
appear.

The Decoding process mentioned this rule and
produce original output string. Match found if
o[m]=L[32] to L[54] place ASCII character equivalent
substring in the ith position. If match found, the value of
m is incremented by one.

Otherwise o[M]^L[32] to L[53] place base pair in
the ith position in output file. If unmatched occurs, the
value of k is incremented by one.

For easy implementation, characters a, t, g, c will no
longer appear in pre-coded file and A,T,G,C will appear
in pre-coded file. For instance, if a segment
"atggtagtagtagtaggttgg........n " has been read, in the
destination file, we represent them as "atg
!!!!ggt#..............ni". Obviously, the destination file is case-
sensitive

It is known that each character requires 1 byte (8
bit) for storing. In the above example string length = 21
that means 21 bytes are required for storing this string.
After encoding on the basis of reverse techniques of 3
substring length, reduce string length is 11, require 11
byte for storing this string.

2.11 Random string generation method

We have generate a string of four symbols (a, t, g
and c) of any arbitrary length, it is user requirement.
This method simply use random function C++.

3. ALGORITHM EVALUATION

3.1 Accuracy:

As to the DNA sequence storage, accuracy must be
taken firstly in that even a single base mutation,
insertion, deletion or SNP would result in huge change
of phenotype as we see in the sicklemia.It is not
tolerable that any mistake exists either in compression
or in decompression. Although not yet proved
mathematically, it could be inferred from reverse
techniques that our algorithm is accurate, since every
base arrangement uniquely corresponds to an ASCII
character.

3.2 Efficiency

We can see that the internal reverse algorithm can
compress original file from substring length (I) into I
characters for any DNA segment, and destination file
uses less ASCII character to represent successive DNA
bases than source file.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1213

3.3 Space Occupation

Our algorithm reads characters from source file and
writes them immediately into destination file, it costs
very small memory space to store only a few
characters. The space occupation is in constant level. In
our experiments, the OS has no swap partition. All
performance can be done in main memory which is
only 512 MB on our PC.

4. EXPERIMENTAL RESULTS AND DISCUSSION

We tested reverse techniques on standard
benchmark data used in [17]. For testing purpose we
use eight types of data. These tests are performed on a
computer whose CPU is Intel P-IV 3.0 GHz core 2
duo(I024FSB), Intel 946 original mother board, IGB
DDR2 Hynix, 160GB SATA HDD Seagate. Since the
program to implement the technique have been
written originally in the C++ language, (Windows XP
platform, and TC compiler) it is possible to run in other
microcomputers with small changes (depending on
platform and compiler used). The program, requires
512K, without additional hardware except for disk
drives and printer.

The definition of the compression ratio [11]; 1-
(|O|/2| /)), where |7| is number of bases in the input
DNA sequence and |O| is the length (number of bits) of
the output sequence, The compression rate, which is
defined as (|O|/| -/]), where |7] is number of bases in
the input DNA sequence and |O| is the length (number
of bits) of the output sequence. Total reduce file size is
equal to Compress file size plus Library file size in byte,
i.e (T-C+L byte). The improvement [9] over gzip-9,
which is defined as (Ratio_of_gzip-9 -
Ratio_of_RCR)/Ratio_of_gzip-9*100. The compression
ratio and compression rate are presented in Table-I to
Table-III. Our result compared with gzip-9 [l1] in the
same table. The compression ratio and compression
rate are shown in different table in column. The normal
sequence and artificial sequences result shown in
Table-I and the reverse, the complement and the
reverse complement sequences result shown in table-II
to table-III. The artificial results are shown in same
Table.

Table I

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1214

Table II

Table III

Experimental results show that, the normal
sequence is highly compressible than their other
orientation. Our algorithm is very useful in database
storing. You can keep sequences as records in database
instead of maintaining them as files. By just using the
exact reverses, users can obtain original sequences in a
time that cannot be felt. Additionally, our algorithm can
be easily implemented.

From these experiments, we conclude that internal
reverse matching pattern are the same in all type of
sources and Look Up Table plays a key role in finding
similarities or regularities in DNA sequences. Output
file contains ASCII character with unmatch a, u, g and c.
So it can provide information security, which is very
important for data protection over transmission point
of view. This technique provides the high security to
protect nucleotide sequence in a particular source.
Here we can get better security than static Look Up
Table. But experimental result showing no meaningful
changes are found using other orientation taking as an
input sequence. In case of artificial sequences the
compression rate are almost same in all sequences. The

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1215

program was tested with Normal and Artificial DNA
sequence and Compression ratio and Compression rate
is tabulated in Table-I.

5 CONCLUSIONS

In this article, we discuss a new DNA compression
algorithm whose key idea is internal reverse. This
compression algorithm gives a good model for
compressing DNA sequences that reveals the true
characteristics of DNA sequences. The compression
results of reverse DNA sequences also indicate that our
method is more effective than many others. This
method is able to detect more regularities in DNA
sequences such as, mutation and crossover and achieve
the best compression results by using this observation.
This method fails to achieve higher compression ratio
than other standard methods, but it has provided very
high information security. Important observations are:
Reverse substring length vary from 2 to 5 and no
distinguishable match found in case the substring
length becoming six or more.

 The substring length three is highly reversible
than substring length four or five. That is why
substring length of three is highly compressible over
substring length of four or five. Normal sequence is
highly compressible than reverses, complement and
reverse complement sequences. Cellular DNA
sequences compression rate and compression ratio are
different because each sequence come from different
sources, where as artificial DNA sequences
compression rate and compression ratio are same in all
time in all data sets.

REFERENCES

[1] Chen, X., Kwong, S., and Li, M. (1999) “A compression

algorithm for DNA sequences and its applications in
genome comparison”, Genome Informatics , 10, 52–61.

[2] Matsumoto, Toshiko., Sadakane , Kunihiko., Imai ,
Hiroshi. (2000) , “Biological Sequence Compression
Algorithms”, Genome Informatics, 11, 43–52.

[3] Grumbach, S. and Tahi, F. (1994) “A new challenge for

 compression algorithms: genetic sequences”,

 Information Processing & Management, 30, 875–886.

[4] Chen, X., Kwong, S., and Li. M., “A compression algorithm
for DNA sequences and its applications in genome
comparison”, Genome Informatics, 10:52–61, December
1999.

[5] Lanctot, J. K., Li, M., and Yang, E., (2000) “Estimating
DNA sequence entropy”. Proceedings of the 11th Annual
ACM-SIAM Symposium on Discrete Algorithms, 409–
418.

[6] M. Li., and P. Vitanyi., (1997)“An Introduction to
Kolmogorov Complexity and Its Applications, 2nd ed.
New York”, Springer-Verlag.

[7] Curnow, R. and Kirkwood, T., “Statistical analysis of
deoxyribonucleic acid sequence data :a review”, J. Royal
Statistical Society, 152:199-220,(1989).

[8] Grumbach, S. and Tahi, F., “A new challenge for
compression algorithms”, genetic sequences,J.
Information Processing and Management, 30(6):875-
866, 1994.

[9] Lanctot, K., Li, M., and Yang , E.H., “Estimating DNA
sequence entropy” , to appear in SODA’, 2000.

[10] Rivals, E., Delahaye, J.-P., Dauchet, M., and Delgrange, O.,
“A Guaranteed Compression Scheme for Repetitive DNA
Sequences”, LIFL Lille I University, technical report IT-
285, 1995.

[11] Bell, T.C., Cleary, J.G., and Witten, I.H., “Text
Compression”, Prentice Hall, 1990.

[12] Hisahiko Sato, Takashi Yoshioka, Akihiko Konagaya,
Tetsuro Toyoda, “DNA Data Compression in the Post
Genome Era” Genome Informatics 12: 512–514 (2001).

[13] Matsumoto, T., Sadakane, K., and Imai, H., “Biological
sequence compression algorithms”, Genome
Informatics, 11:43–52, 2000.

[14] Matsumoto, T., Sadakane, K., Imai, H., and Okazaki, T.,
“Can general-purpose compression schemes really
compress DNA sequences?, Currents in Computational
Molecular Biology", Universal Academy Press, 76–77,
2000.

[15] Chen, X., Kwong, S., and Li, M., “A compression algorithm
for DNA sequences and its applicationsin genome
comparison”, Genome Informatics , 10:52–61, 1999.

[16] Ma, B., Tromp, J and Li, M. (2002) “PatternHunter –
faster and more sensitive homology search”,
.Bioinformatics, 18, 440 – 445.1698.

[17] S. Grumbach and F. Tahi, “A new challenge for
compression algorithms : Genetic sequences,” J . Inform.
Process . Manage., vol. 30, no. 6, pp. 875-866, 1994.

[18] Xin Chen, San Kwong and Mine Li, “A Compression
Algorithms for DNA Sequences Using Approximate
Matching for Better Compression Ratio to Reveal the
True Characteristics of DNA”, IEEE Engineering in
Medicine and Biology, pp 61-66, July/August 2001.

[19] T.Matsumoto, K.Sadakame and H.Imani, ”Biological
sequence compression algorithm”, Genome Informatics
11:43-52 (2000).

[20] ASCII code. [Online]. Available:
http://www.asciitable.com

[21] National Center for Biotechnology Information,
http://www.ncbi.nlm.nih.gov

http://www.ncbi.nlm.nih.gov/

