
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 962

An Efficient And Cost Effective URL Indexer For Better Search Engine

Ms. Manasa R1, Mr. A V Krishna Mohan2

1M.Tech student, Dept. of CSE, SIT, Tumakuru, Karnataka, India
2Assistant Professor, Dept. of CSE, SIT, Tumakuru, Karnataka, India

---***---
Abstract –The usage of internet is growing enormously
these days and the information in the cloud can be extracted
using web pages by search engines. Because of rapid
development in the web applications, the large numbers of
web pages are getting created each day. The web crawlers
update information about the web pages into a distributed
key-value store in the cloud, keyed by the URL of the page and
time stamped by the time of the crawl. For Search Engine
Optimization, many search engines adopt Hadoop for
maintenance of an index of the various website. The URL data
gathered in the cloud is huge and this data can be categorized
as Big data. Maintenance of this huge data of URL indexes
involves huge cost. To reduce the cost involved, we have to
reduce the usage of the cloud. To optimize the computation
time, here we propose an efficient URL indexer by
incorporating a Hadoop based effective scheduler that reduces
the overall computation time of the indexing Big data by
allocating idle task slots to the prioritized job, thus reducing
the cost.

Key Words: Big Data, Cloud computing, Hadoop,
Scheduler, Indexer.

1. INTRODUCTION

The enormous growth in Information technology (IT)
industry has led to the growth of virtualization of servers.
The Huge cost is involved in building this virtualization of the
storage server. The cost not only involves investing in
technology but also in maintaining these. This led IT industry
to virtualize the storage, computation to cloud and use of Big
data technologies for data management in the cloud. Since the
cloud service is highly scalable, flexible and platform
independent, cloud technologies are used widely by all kind
of users. In the recent days, since the cloud computing has the
provision of configurable computing resources it is grabbing
the attention of many users. Cloud provides the resource to
users on demand and user is required to pay for the
demanded resources from the cloud.

The cloud solutions extended by the cloud service
providers [1], like Google Apps, are giving service to the user
online on the internet. The cloud service providers offer the
solutions to the user round the clock in the cloud.
Authenticated user can access the information in the cloud
securely from any ware. To build any application and to make
it available to user one has to setup the server and install the
hardware physically and run the necessary software. Thus,

building and maintaining the actual physical server involves
cost and it lacks scalability, and however use of cloud service
providers for the same has an advantage of huge computation
capacity with quicker and cheaper servers. Cloud service
providers are adding flexibility to business which is the
starting step and does not have an estimation of storage
usage in the future. So such users can use the cloud platform
and extend their storage capacity whenever required.

The data that is accumulating in the cloud because of
financial trading, advanced web technologies, social
networking user generated data and e-commerce details can
be categorized as Big data. Big data involves huge volume,
high-variety and high-velocity data, thus, quick and simple
processing techniques are required to manage this big data.
In recent days, Big data technologies are concentrating
towards efficient techniques to manage the Big data. Efficient
data processing techniques are required to reduce the time of
result computation. So by reducing the computational time,
cost of cloud usage can be reduced. Thus, to minimize the cost
of cloud usage, it is recommended to have fast computational
procedures for Big data in the cloud.

For indexing the Big data, there are a few potential
challenges. First and foremost challenge is the digital
information that is getting accumulated which is too huge to
manage by people or normal software. And single computing
system cannot store and manage this Big data hence data
should be stored and manage in distributed manner.
Therefore, big data indexing should be built keeping the
distributed system into consideration. Second challenge
being, the accumulated data has a complex structure, data is
heterogeneous in nature and is high dimensional. Hence, the
traditional index techniques with normal data set are
insufficient to index the big data. Adding to these challenges
we have to consider that the techniques to build the indexing
should be fault tolerant.

Here in this paper, we are considering the World Wide
Web page information that is stored in the key-value stores
[2] to provide the index for that big data. The URL index data
that is accumulating for a search engine cloud is growing
enormously day by day. The URL indexed data needs to be
maintained in an efficient manner to reduce the usage cost of
the cloud by any user. Old and obsolete data must be deleted,
malicious URL’s should be removed from the index and so
many maintenance works are involved. So it is need of an
hour to have the technique to minimize the computational
time for all the maintenance works needs to be done in the
cloud, thus by decreasing the cloud usage.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 963

The usage of Hadoop [3] on a cloud computing
environment which contains data acute operations speed up
the processing and it is necessary to have techniques for
enhancing throughput. The Hadoop inbuilt scheduler is
originated on a First in First out (FIFO) mechanism. The final
throughput is reduced for multiple jobs submission when
FIFO is used as a scheduler. Here we propose a scheduler
which executes the shorter jobs in priority for multiple users
in parallel without any waiting period. This helps in quicker
execution of shorter jobs without any waiting period and
thus, accelerates the system performance. And we also
propose an effective URL indexer, which provide a
positioning mechanism for web pages saved in the cloud.

2. LITTERATURE SURVEY

MapReduce [4, 5] is a programming model; it is a
framework for managing the huge data sets with a
coordinated, distributed method and a framework for
implementation to process the larger data sets in the cluster.
A Map operation categorizes the input (like, sorting
employees by their employee ID into a list and one queue for
each ID) and filtering and a Reduce operation performs an
analysis process (like the statistics of employees in every
queue is counted, recognizing its frequencies).

MapReduce is a framework which transforms the memory
representation of data in the distributed servers to a data
format which is apt for storage and transform between
various servers, runs the diverse tasks in coordinated
manner, the data transfer and the communication of data
between the diverse components of the system is also
managed, and provides redundancy and flaw tolerances [5].

The functional programming models also use the map and
reduce functions and the MapReduce framework is inspired
by that, however, the purpose achieved in MapReduce is
different from their primitive forms. The prime offerings of
the MapReduce programming technique are the scalability
and the fault tolerance achieved by Map and Reduce
functions. The optimization of an execution engine is done to
achieve the scalability and the fault-tolerance for the different
applications. Such as a single-threaded implementation of
MapReduce is almost same as a traditional implementation
technique, only the multithreaded implementations prove the
faster execution. Good MapReduce algorithm can only be
achieved by optimizing the communication cost.

3. SCHEDULING TECHNIQUES

The scheduling of available jobs in Hadoop[6] is
performed by a master node. Master node with TaskManager
distributes work to all of the slaves. Every few seconds, slaves
used to send heartbeat messages to the master, and then
tasks are assigned in depending on the received heartbeats.
The exact numbers of slots are maintained by slave node for
each Map and Reduce functions. Since Hadoop slots have a
single thread for single node they are considered as a single

threaded task manager. The slot model can sometimes
underutilized system resources; however this model
manages the memory and CPU utilization in a better manner.
The FIFO scheduling schedules the larger jobs if they come
first, then the shorter jobs have to wait for a long time
resulting in poor response times. This disadvantage makes
the interactive applications which submit a shorter job for
execution has to wait for a long time resulting in poor
performance.

3.1 Fair scheduler

 One of the scheduler called as fair scheduler [7] which is a
scheduler for Hadoop at slot-level granularity.

Features of fair scheduler are:

• Isolation: Isolation feel is given to the each job in the
queue by providing the illusion of running a private
cluster.

• Statistical Multiplexing: If the capacity given to some
slots is unused by some users then redistribute that
unused capacity to other slots.

 The fair scheduler uses a two-level hierarchy. The given
capacity is divided into multiple pools. At the first level, this
scheduler allocates task slots across many pools, and at
another level, for multiple jobs in the pool, slots are allocated
in a fair manner. Each pool is guaranteed with a minimum
share of slots until there is a demand for the resource. The
constraint over here is the total sum of the minimum shares
of all pools should not exceed the total system capacity. The
pools if they required more than the minimum share given to
them they can use the other pools slots when those slots are
not being used by the pools.

In fair scheduling, for large jobs or production jobs special
pools are allocated and for normal user jobs or short jobs, one
pool per each are allocated. This practice makes the shorter
jobs independent of longer jobs thus providing good response
time. However, fair scheduling has the disadvantage of jobs
getting starved because the reduce task has to starve till all
dependent map tasks to be completed and if there is a
dependent log running map task then reduce function must
be on hold till the complete execution of the map task.

3.2 Capacity Scheduler

Capacity scheduler [8] was designed by Yahoo!.

Features of capacity scheduler are:

• Locality-aware: It automatically allocates the
resources to the nodes which are nearby. Hence,
programmers need not worry about the locality of
the resources.

• Access Control Lists (ACL): It uses ACLs to provide
access to the users and administrators.

• User limit: This scheduler can set the minimum
resource usage for the each user in the queue

 All available jobs are organized into different queues. The
hierarchical queue is used to manage the jobs. The Certain

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 964

capacity of the available resources is allocated to each queue.
The FIFO scheduling is followed within each queue. Idle
resources of one queue can be allocated to another queue
which is in need. The job submission limits are determined by
the scheduler and scheduler decides if the job can be
executed or not. A job which takes too much of time can be
preempted. In this scheduler single user cannot monopolize
resource usage because capacity scheduler has a mechanism
to limit the percentage of resources assigned to the user. Jobs
can specify the higher memory requirement for the execution
and capacity scheduler can run these kinds of jobs in the
clusters with higher available memory. The resource capacity
can be configured by the job. This scheduler ensures that
certain amount of available capacity is shared among users
rather than sharing among jobs.

4. PROPOSED SYSTEM

In this paper, we propose a computational model which is
an extension to the existing MapReduce scheduler which is
used in the index ranker to give positioning to the URL
indexes in the cloud. Here the URL index data present in the
cloud can be positioned based on the importance of incoming
links and outgoing links using the graph representation.
During execution of URL index position algorithm, one can
implement the efficient scheduler to minimize the
computation time of indexer execution. Fig-1 shows the
multiple queues allocated with the CPU resources in priority
in the efficient scheduler.

Fig-1: Efficient scheduler

4.1 Efficient Scheduler

The proposed efficient scheduler is an add-on feature to
MapReduce scheduler, which creates an interface for sharing
the CPU resource in single computing cluster to multiple job
submissions in the uniform manner and queues are given
with priority to have the CPU share. The priority to a queue is
given by considering the job execution cost model. The entire
cluster pools are allocated to an individual job, which is
running at the present time when there is no other job in the
queue, but the new jobs with a high priority when arrived at
the same cluster; new jobs are allocated with the idle task
slots present in the pool. If the new job comes with low
priority than the one being executed, the new job is
scheduled only if idle slots are available otherwise the new
job is scheduled only after completion of the running job. This
enables idle tasks to aid the parallelizing of job execution.

The proposed efficient job scheduler allocates the usable
resources to the jobs with the highest priority and schedules
the priority jobs into free pools. This scheduler uses the quick
message exchange communication system between
JobTracker [9] and TaskTracker [10]. The system
performance is improved due to this optimization in the
planning of job execution since jobs are executed in parallel
and smaller jobs are finished in short or no waiting time
without looking forward to the execution of heavy jobs. Since
short jobs are given with the separate slots to execute, they
can be executed as soon as they appear in the queue. And
usage of quick messaging improves the task scheduling
mechanism speed for computations which involves intensive
data. The FIFO mechanism is used as the default scheduler in
Hadoop which is inefficient to manage the multiple jobs.
Hadoop with FIFO is not efficient when compared to the
proposed efficient scheduler when couples of jobs are
accommodated into a single cluster.

In the proposed scheduler for jobs, few of parameters like
preemption of low priority jobs, giving the number of jobs to
be executed in the pool, to avoid the reduce tasks till
completion of all map tasks etc can be configured. This
feature makes the applications to have the customized
execution of the job and make the execution fast. Whenever
high priority jobs are submitted, they can be configured in
the customized way to speed up the execution.

4.2 Effective URL indexer

Here we show the URL Index ranker by using MapReduce
approach to parallelism. The internet has a huge collection of
web pages so that it is the tedious job to find the URL Index
position. There may exist a web page which contains the
spam, to find out this we can use the number of incoming
links to the web page. Here we are not searching the web
page by the content alone. Thus, the URL Index ranker
algorithm is the best way of using the collective intelligence
to resolve the importance of web pages.

Here we describe a single-machine implementation which
can easily handle millions of web pages. URL Index ranker
uses the adjacency matrix and calculates the position score
for each web page and this is an algorithm to assign a rank for

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 965

each web page based on importance and efficiency [11]. It is
the link analysis algorithm, here a numerical cost is assigned
to each set of hyperlink documents and the importance of the
set of hyperlink document set is discovered.

The algorithm works by using MapReduce technique, in
map phase each and every vertex sends a value of its
outgoing link to all of its neighbors and in reduce phase,
positioning is calculated by adding all the values the vertex
received from its neighbors.

The MapReduce phase can be executed for more than one
time to have the accurate results. And the incremental big
data processing is adopted over here, where results of the
previous computations are used for further analysis. This
incremental big data processing saves huge computational
cost as computation can be done only for the small portion of
the data which is affected after previous computation. It is
redefined with the probability distribution, to represent the
random click on links and hyperlinks to arrive at any instant
web page [12].

Once the positioning of the web page is calculated we can
use the same value to find out the spam pages present in the
cloud. We can set the minimum positioning threshold value
and the web pages with the position value less than the
threshold value can be garbage collected from the cloud. The
web pages which are not referred to any other web pages will
get the very little positioning value, thus, they can be
removed from the cloud.

Thus, using this effective URL indexer, the search engine
can return the result for the user query with most relevant
web pages. Thus, here we can provide the high position to the
page with a number of incoming links, the page with high
importance. The positioning is assigned to the all web pages
thus positioning can be considered as an index to that web
page and data is stored in the key-value store. Whenever a
new search was given to the search engine, the search engine
can refer to the indexed value of the web page and return the
web page with relevant information with high positioning
value among the others. While calculating the index position
value we are using the MapReduce with the efficient
scheduler which speeds up the job execution. Usage of an
add-on scheduler improves the throughput of the entire
process.

5. CONCLUSION

Here we proposed a model based on MapReduce for
processing the Big data in the cloud present in an incremental
manner. By adopting the incremental computational model it
reduces the huge computational cost. Hence, the big data
involves a huge amount of data, to perform the computation
of that data repeatedly involves more computational cost.
The proposed efficient MapReduce scheduler combines an
iterative model which is general-purpose with incremental
analysis engine and the iterative computational techniques
for effective incremental computation. This algorithm is very
efficient which is useful for parallelism in map reducing. Here
we present big data concepts and characteristics to manage

data effectively in the cloud. And also explain the URL Index
ranker algorithm for map reducing concept in big data. Thus,
overall this framework reduces the time taken for
computational work by adopting effective scheduler and
other techniques so the usage cost of the cloud is greatly
reduced to the cloud users. This is resulting in the better
search engines to manage huge data of a large number of web
pages in the cloud.

Using the positioned indexes we can manage to find the
best URL and use them for future and the URL with less
position value can be removed from the cloud. Thus, make
this work as the maintenance of the storage and cost in an
effective manner.

ACKNOWLEDGEMENT
My Sincere thanks are due to my supervisor A V Krishna

Mohan, for the valuable guidance offered during every stage
of my project work. I thank Principal, Siddaganga Institute of
Technology and the management of Siddaganga Institute of
Technology for the support, encouragement and facilities
provided at the institute.

REFERENCES

[1] Amazon Elastic Compute Cloud,

http://www.amazon.com/ec2/, accessed on March
2014.

[2] https://en.wikipedia.org/wiki/Key-value_database

[3] Apache Hadoop, http://hadoop.apache.org., accessed on
March 2014.

[4] J. Dean and S. Ghemawat, “MapReduce: Simplified Data
Processing on Large Clusters”, Comm. of the ACM, Vol.
51, No. 1, 2008, pp. 107-113.

[5] MapReduce Algorithms for Big Data Analysis, DNIS 2013

[6] “Job Scheduling for Multi-User MapReduce Clusters” by
Matei Zaharia,Dhruba Borthakur, Joydeep Sen Sarma,
Khaled Elmeleegy, Scott Shenker, Ion Stoica.

[7] Apache Fair Scheduler,
http://hadoop.apache.org/docs/r2.3.0/hadoopyarn/
hadoop-yarn-site/FairScheduler.html, accessed on
March 2014.

[8] Hadoop Capacity scheduler
https://svn.apache.org/repos/asf/hadoop/common/tag
s/release-0.19.2/docs/capacity_scheduler.pdf

[9] https://wiki.apache.org/hadoop/JobTracker

[10] https://wiki.apache.org/hadoop/TaskTracker

[11] “The PageRank Citation Ranking: Bringing Order to the
Web” by Lawrence Page, Sergey Brin, Rajeev Motwani.

[12] http://www.webworkshop.net/pagerank.html.

http://www.webworkshop.net/pagerank.html

