
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 527

Approaches to Data Parallel Programming

Vishaldeep Singh, Arun Seth

Assistant Professor, Dept. Of Computer Science & Engineering, Guru Nanak Dev University Amritsar, Punjab, India
Assistant Professor, Dept. Of Computer Science & Engineering, Guru Nanak Dev University Regional Campus

Gurdaspur, Punjab, India

---***---

Abstract - In this paper efforts have been put efforts to
illustrate in the best way how to start with the programming
of data parallel model. The various things that need to be
taken care before starting up with this approach of
programming.
Data Parallel Approach means split the data on which the
instruction is to be applied and assign the same task to
different processing elements for the processing over the
individual data that has been assigned to them. Hence after all
the processing elements are done with the assigned task then
the whole result is then accommodated back at one place.

Two approaches of data parallel programming have been
discussed: (i) Using multithreading in Java (ii) Using DPCE i.e.
Data Parallel C Environment. The first approach although uses
all the available cores of the CPU to optimal use but gives the
programmer very less control over the data distribution. But
the second approach gives more ability to programmer to
change the data and decide how the data is to be distributed
among the various available processors and various cores in
these processors.
Then finally an optimal approach using genetic algorithm is
discussed. It discusses how to optimize the data parallel
distribution among the various processors. Then the
challenges faced during programming are discussed.

Key Words: Javaspace, Genetic Algorithm, Cross-over,
Mutation, Java Multi-threading, Traversing Salesman
Problem.

1. INTRODUCTION

Need for programming languages in parallel processing
environment:

 Current languages do not provide support for
distributed applications

 Heterogeneous operating system on various
clients and servers

 Data is not local and is distributed over the
whole network

 Absence of concurrency amongst data
Problems:

 Developers need to perform a lot of work.
 They must have very good knowledge of these

languages.

 Interoperation is still not very efficient.

With the advances in hardware and communication
technology, concurrency and distribution have come
naturally into a large spectrum of applications, as they try to
cope with a world where people and information are
geographically distributed and where several things can
happen simultaneously. Concurrency and distribution
introduce a set of problems that greatly increase the
complexity of the software. First, and most importantly,
concurrent and distributed systems are inherently more
complex than non-distributed systems. Secondly, existing
programming models and languages that are appropriate
for sequential, centralized systems don’t necessarily provide
the appropriate mechanisms for effectively expressing
concurrent and distributed scenarios.

Table 1: Comparison amongst various languages in
distributed system [4]

2. METHODOLOGY

Data Sharing
Localized sharing can improve memory bandwidth efficiency

 Efficient memory bandwidth usage can be achieved
by synchronizing the execution of task groups and
coordinating their usage of memory data

Efficient use of on-chip, shared storage
• Read-only sharing can usually be done at much

higher efficiency than read-write sharing, which
often requires synchronization

Data Sharing Example - Matrix Multiplication
Each task group will finish usage of each sub-block of N and
M before moving on

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 528

N and M sub-blocks loaded into Shared Memory for use by
all threads of a P sub-block
Amount of on-chip Shared Memory strictly limits the number
of threads working on a P sub-block

Fig 1: Master-slave model

Master:

• Creates workers

• Sends initial values to workers

• Receives local “sum”s from workers

• Calculates and prints “pi”

Workers:

• Receive initial values from master

• Calculate local “sum”s

• Send local “sum”s to Master

3. JAVA MULTI-THREAD ENVIRONMENT

Java Spaces

The notation followed by [4] is used here and is elaborate and

explained in details as follows:

JavaSpace model is a high level coordination toll for

connecting processes together in a distributed environment.

[4] The technology provides a different programming model,

which views an application as a collection of processes

cooperating via flow of copied objects into or out of one or

more spaces.

A space is a shared, network accessible repository for

objects. [4] Processes use the repository as persistent object

storage. Processes perform a simple operation to write new

objects into space, take object from space or read object in

space. For taking an objects, processes uses a value

matching lookup to find the required object. If a matching

object is found immediately then a process can perform the

required operation, otherwise process has to wait.

Processes do not modify object in space

Fig 2: Java Space Model [4]

The notation followed by [2] is used here and is elaborate and

explained in details as follows :

The JavaSpace Model:

JavaSpace model is a high level coordination toll for

connecting processes together in a distributed environment.

[2] The technology provides a different programming model,

which views an application as a collection of processes

cooperating via flow of copied objects into or out of one or

more spaces. [2] A space is a shared, network accessible

repository for objects. Processes use the repository as

persistent object storage [2]. Processes perform a simple

operation to write new objects into space, take object from

space or read object in space. For taking an objects,

processes uses a value matching lookup to find the

required object. If a matching object is found immediately

then a process can perform the required operation,

otherwise process has to wait. Processes do not modify

object in space. To modify an object, a process must

explicitly remove it, update and reinsert into the space.

During the updating of the object, other processes have to

wait. [2]

Features of JavaSpace [2]:

 Spaces are persistent: Spaces provide reliable

storage for objects. Once stored in the space, an

object will remain there until a process explicitly

remotes it.

 Spaces are persistent: Spaces provide reliable

storage for objects. Once stored in the space, an

object will remain there until a process explicitly

remotes it.

 Spaces are persistent: Spaces provide reliable

storage for objects. Once stored in the space, an

object will remain there until a process explicitly

remotes it.

 Spaces are transitionally secure: The Space

technology provides a transaction model that

ensures that an operation on a space is atomic.

Transactions are supported for single operations on

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 529

a single space, as well as multiple operations over

one or more spaces.

 Spaces are transitionally secure: The Space

technology provides a transaction model that

ensures that an operation on a space is atomic.

Transactions are supported for single operations on

a single space, as well as multiple operations over

one or more spaces.

 Spaces are transitionally secure: The Space

technology provides a transaction model that

ensures that an operation on a space is atomic.

Transactions are supported for single operations on

single space, as well as multiple operations over one

or more spaces.

Fig 2: Javaspace implementation[2]

4. DATA PARALLEL C ENVIRONMENT

This gives the programmer a freedom to control the

assignment of data to the various nodes unlike the java

threading counterpart of the same. Here the programmer

can decide that the data which is to be assigned to which

Problems solved in DPCE [1]:

 It allows processes on different machines to share

data.

 It allows using user defined data-types on various

nodes of the distributed system.

 This may be achieved my replicating the data on the

various nodes of the distributed system.

 Even if there is no physical shared memory even

then the processes here can communicate with each

other in DPCE.

5. GENETIC ALGORITHM FOR OPTIMIZED DATA

PARALLEL PROGRMMING

Optimizing By Genetic Algorithm [5]

The basic form of the GA. This algorithm will be applied

to each of the randomly generated queries used in an

experiment.

Fig 3: Node graph signifies all the nodes [5]

5.1 Initialization Phase

In this phase of the algorithm an initial population of random

solutions is generated for the target query. Generating a

random solution includes randomly selecting a root table

and the type (single or double) of each edge. The choice of

root table is made in sympathy with the number of

root-table-reducing schedules for each candidate root table.

5.2 Selection Phase

In this phase of the: algorithm, solutions are selected to

participate in the reproduction phase of the algorithm

based on relative fitness. A solution is a root-table-

reducing semi-join schedule. The fitness function is given

by: schedule cost + cost to fully reduce non-root tables [5]

5.3 Reproduction Phase

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 530

In this phase of the algorithm, new solutions

(schedules) are generated using a crossover operator. The

crossover operator works by exchanging a sub-schedule

between a pair of compatible schedules. The process starts

by selecting the first schedule to be crossed. From the join

tree of the selected schedule, a sub-tree is chosen for the

exchange. The schedule for this sub-tree is then exchanged

with the schedule (for the same sub-tree) used by a

randomly-selected, compatible crossing partner (a

schedule where the chosen sub-tree root has the same

parent table).

Cross-Over Operation [5]

Join trees (a) and (b) in Figure depict two schedules that

are compatible if the chosen sub-tree root is T4; they are

incompatible if the chosen sub-tree root is T2.

Fig. 4: To illustrate the crossover operation in GA [5]

Mutation [5]

During mutation, one of five mutation operators is applied to

one randomly selected table:

(a) change a single edge to a double edge,

(b) change a double edge to single edge,

(c) change order of double edges,

(d) (non-root only) set table as new root, and

(e) (root only) change last edge

Fig. 5: Change a single edge to a double edge [5]

Fig 6: Change a double edge to single edge [5]

Fig. 7: Change order of double edges [5]

Fig 8: (non-root only) set table as new root [5]

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 531

Full Implementation

Fig. 9: Full GA Implementation

6. IMPLEMENTATION AND SELF ANALYSIS

(i) Case Study 1. (Using Java Multithreaded
programming)

The java program that is considered here [6] makes almost

500 threads and then makes them execute on different cores

of the processor because by default the processor will make

the cores work equally in proportions.

The CPU utilization for the parallel program is:

Fig 10: The CPU utilization running 500 threads

The normal Execution of CPU under all the same programs is

as shown except for running the program is as shown below:

Fig 11: The CPU utilization when idle

(ii) Case Study 2. (Using Data Parallel C Environment,

DPCE)

The execution of the data parallel C program which can

control the data that is granted to each of the cores of the

processors is as below [6]:

Fig 12: Snapshot of visual C++ executing code

The CPU utilization of different cores if different as the data

given to them for processing is uneven:

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 532

Fig. 13: CPU utilization running the parallel code

7. PERFORMANCE ANALYSIS

The notation followed by [1,2,3] is used here and is elaborate

and explained in details as follows :

1. Travelling Salesman Problem [1]

The program uses two shared objects: a job queue and an

IntObject containing the length of the current best path. [1]

It should be clear that reading of the current best path length

will be done very often, but since this is a local operation,

there is no communication overhead. Updating the best path

happens much less often, but still only requires one

broadcast message.

The performance of the traveling salesman program (for a

randomly generated graph with 12 cities) is given in Figure

10. The implementation achieves a speedup close to linear.

With 16 CPUs it is 14.44 times faster than with 1 CPU

Fig. 15: Measured speedup for the DPCE implementation of
the Traveling Salesman Problem. [1]

2. Parallel All pair shortest path problem [2]

The performance of the program (for a graph with 300

nodes) is given in Figure 4.2. The parallel algorithm

performs 300 iterations; after each iteration, an array of 300

integers is sent from one processor to all other processors.

In spite of this high communication overhead, the

implementation still has a good performance. With 16 CPUs,

it achieves a speedup of 15.88. One of the main reasons for

this good performance is the use of broadcast messages for

transferring the array to all processors

Fig. 16. Measured speedup for the DPCE implementation of
the All-pairs Shortest Paths problem. [2]

8. CHALLENGES IN DATA PARALLEL

PROGRAMMING

Finding and exploiting concurrency often requires looking at

the problem from a non-obvious angle

 Computational thinking

 Dependences need to be identified and managed

 The order of task execution may change the

answers

 Obvious: One step feeds result to the next steps

 Subtle: numeric accuracy may be affected by

ordering steps that are logically parallel with each

other

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 05 | May-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 533

 Performance can be drastically reduced by many

factors

 Overhead of parallel processing

 Load imbalance among processor elements

 Inefficient data sharing patterns

Saturation of critical resources such as memory

bandwidth.

9. CONCLUSION

Two approaches of data parallel programming have been

discussed: (i) Using multithreading in Java (ii) Using DPCE

i.e. Data Parallel C Environment. The first approach

although uses all the available cores of the CPU to optimal

use but gives the programmer very less control over the

data distribution. But the second approach gives more

ability to programmer to change the data and decide how

the data is to be distributed among the various available

processors and various cores in these processors.

10. FUTURE WORK

With the increase in demand of the parallel programming

these days there are not many experienced programmers

available for doing these kinds of jobs.

The sole reason behind this is the lack of support of the

traditional languages like Java and C++ to the parallel

programming. Of course there are some specialised

languages for parallel programming such as Drayd and

DraydLINQ and some .NET platform oriented platform by

Microsoft which specialises in dealing with parallel

programming problems.

But programmers need time to learn and master such new

ideas and concepts. Hence work can be done to implement

new libraries and more support in the traditional languages

to provide good exposure to the parallel programming. Like

the dpce.h is given for the data parallel C environment

header file which is freely available on the internet. But no

support is provided to such content. Hence further some

good resources can be provided for the new users to learn

these concepts.

REFERENCES

1. Petr Pospichal, Jiri Jaros, and Josef Schwarz , " Parallel

Genetic Algorithm ",IEEE, 2010

2. H.E. Bal, R. van Renesse, and A.S. Tanenbaum,

‘‘Implementing Distributed Algorithms Using Remote

Procedure Calls,’’ Proc. AFIPS Nat. Computer

Conference, 2006

3. Cristina Isabel, Videira Lopes. "DPCE: A Language
Framework For Distributed Programming", IEEE,
2012

4. Michael Isard, Yuan Yu. "Distributed Data-Parallel

Computing Using A High-Level Programming
Language", IEEE, 2011

5. Rachid Guerraoui, Luís Rodrigues. "Introduction to

Reliable Distributed Programming", Springer, 2008

6. Internet Resource:

(i) Data Parallel C Tutorial,

http://www.crescentbaysoftware.com/dpce/t

utorial.html

(ii) Java Data Concurrency Tutorial

http://www.vogella.com/articles/JavaConcurre

ncy/article.html

http://www.crescentbaysoftware.com/dpce/tutorial.html
http://www.crescentbaysoftware.com/dpce/tutorial.html
http://www.vogella.com/articles/JavaConcurrency/article.html
http://www.vogella.com/articles/JavaConcurrency/article.html

