
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 04 | Apr-2016 www.irjet.net p-ISSN: 2395-0072

 © 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1512

EFFECTIVE SEMANTIC CLASS LEARNING FROM THE WEB WITH

ONTOLOGY

*1Mr. Venkataramanan .K *2Dr.Arutchelvan .G

*1M.Phil Research Scholar, Department of Computer Science Adhiparasakthi College of Arts and Science

, Kalavai, TamilNadu, India.

 *2M.Phil Guide, Department of Computer Science Adhiparasakthi College of Arts and Science, Kalavai,

TamilNadu, India.

---***---
Abstract - In this paper we introduce a novel

unsupervised ontology learning approach, which can be

used to automatically derive reference ontology from a

corpus of web services for annotating semantically the

Web services in the absence of core ontology. Our

approach relies on shallow parsing technique from

natural language processing in order to identify

grammatical patterns of web service message

element/part names and exploit them in construction of

the ontology. The generated ontology is further

enriched by introducing relationships between similar

concepts. The experimental results on a set of global

Web services indicate that the proposed ontology

learning approach generates an ontology, which can be

used to automatically annotate around 52% of element

part and field names in a large corpus of heterogeneous

Web services.

Key Words: Ontology Learning, Web Services Annotation,

NLP. Heterogeneous web services, Ontology based

webservices, RDF.

I. INTRODUCTION

The vision of web service technology to expose
functionality of on-line services for system-to-system
communication has resulted in deployment of
considerable number of services on the Web. At the same
time the Semantic Web initiative has provided methods,
tools and knowledge structures for processing
semantically enriched web services. Unfortunately, due to
complexity of providing semantic information to web
services, the visionary view of semantic web services has
not been well accepted neither by industry nor
governmental sector where semantic web services
technologies could have the major impact. Hence vast
majority of public web services lack semantic information
and this, complemented with the increasing number of
available web services, is the main obstacle in using

semantic technologies either for exploiting or analyzing
the existing web services. In the absence of core
ontologies, annotation of existing web services is
dependent on ontology development and ontology
learning techniques.

The latter refers to applying machine learning techniques
for automatic discovery and creation of ontological
knowledge [12]. In addition to outstanding ontology
development obstacles [12] (being time-consuming and
Labor-intensive), ontology acquisition at the Web scale,
such as we are aiming for, imposes extra burden primarily
due to the large dataset size, heterogeneity of data and
dynamicity of Web. Moreover, ontology acquisition solely
from web service descriptions is a resource-demanding
and error-prone task since majority of WSDL elements,
which need annotations, lack textual documentation
(around 95% of elements in our collection of ca 15 000
WSDL documents have no human-readable
documentation attached). Furthermore, often the syntax of
WSDL element names does not convey correct and
complete picture of underlying semantics [1]. There have
been efforts [14] [7] both in academia and industry to
invent solutions for (semi) automatically annotating
existing web services with standard semantic descriptions.
The applicability of such solutions is hampered mainly by
the annotation cost, as reported by Küngas and Dumas [2].

In this paper we first propose an unsupervised method for
domain-independent ontology learning from web services
corpus derived from a set of WSDL documents describing
available Web services. The main purpose of the
constructed ontology would be to facilitate semantic
annotation of WSDL documents and XML schema for
further analysis and usage of the Web services. The recall
and precision of our approach is enhanced by utilization of
natural language processing (NLP) techniques and
linguistics resources (thesauri and acronym tables). The
constructed ontology is then used to support automated
annotation of data structure definitions in XML Schema
and Web service interfaces in WSDL documents by using
the heuristic-based automated annotation as proposed by
Küngas and Dumas [2]. One of the specific applications of

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 04 | Apr-2016 www.irjet.net p-ISSN: 2395-0072

 © 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1513

the constructed annotations is to increase the quality of
Web services match-making. Matching of web services can
then be used either during composition of new or analysis
of existing web services.

The rest of this paper is organized as follows. In
Section 2 we introduce our ontology development
methodology and discuss requirements and design issues
for the reference ontology. In Section 3 we present our
ontology learning method, whereas the evaluation results
are captured in Section 4. Finally, Section 5 reviews
related work, while conclusions and discussion on future
work are presented in Section 6.

II. ONTOLOGY DEVELOPMENT METHODOLOGY

Our ontology development methodology is inspired
from the ROD model proposed by Zhou [12] and is an
incremental methodology consisting of multiple iterations.
Accordingly, the methodology is based on a cycle of three
consequence phases: design, learning and validation.
While the ontology design phase involves identification of
domain resources and analysis of requirements, the
ontology learning phase embodies the core ontology
learning and construction techniques. Ontology validation
and evaluation of the generated ontology is the last phase
of the cycle. After completion of a cycle and inspection of
results, we will attempt to improve the results by
integrating the resulting ontology with other ontologies
and incorporating extra domain resources before
executing operation iteration.

In the ontology design phase, we identify the objectives
and requirements for the target ontology, and determine
applicability of relevant domain resources in our case. In
addition, to comply with general characteristics of an ideal
ontology [13] (e.g. clarity, coherence, extendibility, etc),
the target ontology needs to satisfy the following
requirements with respect to objectives of web services
analysis:

1. To maximize interoperability among web services
(i.e. to increase number of matching web services);

2. To maximize the quantity of annotated web

service elements;
3. To be evolvable and allow incremental ontology

learning over time in order to accommodate
frequent changes/updates in the web services
domain.

III. ONTOLOGY LEARNING PROCESS
We follow a bottom-up approach for ontology

learning by starting from processing the WSDL documents
and gradually derive top-level ontological concepts and
relations. As shown in Fig. 1, the ontology learning process
consists of three steps where each step, in turn, is a
pipeline of several tasks. The first step is mostly about

extraction of relevant textual content and subsequent
syntactic refinement, while the second step exploits the
results of the first step to infer ontological concepts,
relationships and instances. The last step deals with
organization of the discovered concepts and relationships
to improve the quality of discovered knowledge. In the
following we explain in detail the activities involved in
each step.

3.1 Information Elicitation

a) Term Extraction

Ontology learning from web service description can be
performed at different levels of granularity, starting from
the finest (XML schema leaf element names which are
either of built-in XSD types or defined basic types) until
more general levels with operations and services.
Resulting ontologies can be used then to annotate the
elements at the same level of granularity as the input
elements. The focus of this work is based primarily on the
finest granularity since once the finest elements of web
services are semantically annotated, the resulting
annotations can be propagated to coarse-grained elements
[2]. Thus, first we will extract the list of fine-grained
element names of the whole dataset (a corpus of WSDL
documents). Next, out of the extracted list we choose a
subset of most frequently presented element names, as
proposed by Küngas and Dumas [2], for seeding ontology
learning process. The extracted terms usually consist of
multiple words (compound words or phrases).

b) Syntactic Refinement

The extracted terms may contain punctuations, shortened
words, and abbreviations, misspelled and irrelevant
words. Thus we need to normalize the terms to improve
the quality of identified ontological concepts and relations
in the generated ontology. Syntactic refinement task is
constructed by using the following methods:

1. Term Tokenization. In context of schema leaf nodes,

the extracted terms usually follow Camel case or
Pascal case form, or separated by underlines and
punctuations, which facilitate the tokenization
process. We use these conventions for segmentation
of terms into constituting tokens. The irrelevant
words (such as single characters) and non-
alphanumeric characters are also eliminated from the
set of discovered tokens.

2. Cleavage of Shortened Words and Abbreviations. A

term or the constituting words may refer to a domain
terminology reflected as shortened word (e.g. pwd
stands for password) or abbreviation (such as ASIN
stands for Amazon Standard Identification Number).
We utilize an auxiliary table for resolving such words
into their corresponding complete syntactic forms.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 04 | Apr-2016 www.irjet.net p-ISSN: 2395-0072

 © 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1514

3. Known Compound Noun Determination. The purpose

of this method is to discover compound nouns (a
sequential combination of two or more words) which
convey a special meaning in general (e.g. first name)
or in the underlying domain (e.g. login name). The
compound nouns are treated as single units in the all
subsequent word processing stages.

4. Word Lemmatization. Next, the words are transformed

into their lemmas in order to look up them in the
dictionary and later to provide unified naming
conventions for labeling identified ontological
concepts and relationships. Words which do not exist
in dictionary are marked as stop words.

3.2 Ontology Discovery
This step concerns with exploited techniques, resources
and tools for identifying the ontological concepts and
relations from those set of refined terms resulted from
previous step. The outcome of this step is our preliminary
knowledge base (ontology + respective instances). The
step consists of the following tasks.

a) Pattern-based Semantic Analysis

We exploit the syntactic regularity patterns observed

when composing a term out of multiple words. According

to this observation vast majority of web service element

names are noun phrases [1] while around 79% of the

noun phrases in English language can be classified into

one of two following patterns as reported by [3]:

 Pattern#1: (Noun1)+ …+(Nounn)
e.g. CustomerId
 Pattern#2: (Adjective1)+… +(Nounn)
e.g. SupportedImageType

The patterns are highlighting the grammatical role of

constituting words and their part of speech act. Both types
of information (grammatical role and part of speech) can
be extracted by employing grammatical dependency
parser tools (e.g. MINIPAR tool [9]), which in addition
discover dependency relationships of a given phrase. A
dependency relationship is an asymmetric binary relation
between a word, called head, and another word (or a set of
words) named modifier, where head reveals the most
emphasized word of the phrase (e.g. Customer Id would be
resolved to pair {head: Identifier, modifier: Customer}).
From dependency parser perspective, the above-
mentioned patterns are identified as follows:

 Pattern#1: (N|Wordn) [(nn)(N|Word1) + .. +(nn)
(N|Wordn-1)]

 Pattern#2: (N|Wordn) [(mod)(A|Word1)+…+(nn)
(N|Wordn-1)]

In these patterns the first part, which is placed inside

parentheses, refers to head of the phrase while the
modifier segment is placed inside square brackets.
Moreover, the words are annotated with their part of
speech act (N for a noun and A for an adjective) and also
grammatical roles (mod for an adjective relation, nn for a
noun-noun relation). We harvest only terms complying
with Pattern#1 or Pattern#2 as they provide the main
ingredients for ontology learning.

b) Term Disambiguation
If all words in a term are determined as stop words, or
when the head part is not a noun, then the term is
considered as a vague term. These kinds of terms are
disambiguated by replacing terms with respective
operation names in WSDL from which input /output
element names the particular term was extracted from. If
the term appears in multiple operations, then we replace
the single term with a concatenation of multiple operation
names. We repeat the entire syntactic processing stages
with new content but this time we simply discard
ambiguous terms.

Fig. 1: Ontology Learning Steps

c) Class and Relation Determination

We rely on the following rules (Rule-1 and Rule-2) to
exploit output of dependency parsing of each term to
capture ontological classes and object property
relationships. Construction of these rules is based on the
following observations:

 According to Bourigault and Jacquemin [5] single-word
terms denote broader concepts than multi-word terms.
They appear more frequently in corpora and are therefore
more appropriate for statistical clustering. In contrast to
single-word terms that are too ambiguous and too generic,
multi-word terms are more interesting for ontological
motivation as they present finer concepts in domains. As
single-word terms denote broader concepts than multi-
word terms, and a compound noun inherits most of its
semantic from its head [4], then we assume that the

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 04 | Apr-2016 www.irjet.net p-ISSN: 2395-0072

 © 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1515

concept representing the head word subsumes the concept
generalizing the entire term. Moreover, since head words
cannot be decomposed further, we will regard them as
concrete concepts in the ontology.

 The relation between head and modifier segment in case of
noun-noun (nn) relationship resembles from grammatical
point of view a kind of possessive authority for the head
segment over an entire term. Based on this observation,
hasProperty relationships among discovered concepts are
asserted similarly to Guo et al.
Based on the aforementioned observations we introduce
the following ontological concept identification rules:

Rule-1: Terms, which are subject to Pattern#1 are
initiating the assertion of following ontological concepts
and relationships:

- Word1 hasProperty Term,
- Term subclassOf Header.

In Rule-1, Term, Word1 and Header are all referring to
concepts in an ontology. For example, term
SessionKeyIdentifier complies with Rule-1, so the following
axioms are added to the ontology: 1) Session isA Class, 2)
SessionKeyIdentifier isA Class, 3)

Identifier isA Class, 4) Session hasProperty
SessionKeyIdentifier, 5) SessionKeyIdentifier subClassOf
Identifier.

Rule-2: Terms, which are subject to Pattern#2 are
initiating the assertion of following ontological concepts
and relationships:

- Term subClassOf Header
In Rule-2, Term and Header are referring to concepts in an
ontology. For example, term SupportedType complies with
Rule-2, so the following axioms are added to the ontology:
1) Type isA Class, 2) SupportedType isA Class, 3)
SupportedType subClassOf Type.

Using Rule-1 and Rule-2, we will generate an ontology
automatically from the corpus of element names extracted
from a set of web services descriptions in WSDL. In the
last step, the initial set of (original) terms extracted from a
collection of web service descriptions are assigned to their
respective ontological representation as individuals.

3.3 Ontology Organization

In order to improve the quality and usability of
generated ontology, the resulting ontology is investigated
to determine extra relationship between concepts or to
remove the redundant ones. In this work, we utilize lexical
similarity between labels of ontology classes and augment
the ontology with assimilator relationship indicating that
the classes on both side of this relationship convey a
similar lexical semantic .We employ WordNet digital
dictionary [10] and a WordNet lexical similarity library [8]

to measure similarity between labels. We adopt an
unsupervised agglomerative clustering approach to obtain
clusters of similar classes. The clustering algorithm starts
by putting every single data point (label of each concept)
in one cluster to set up the initial clusters. Then, it
measures pair-wise similarity distance of data points in
one cluster against those belonging to other clusters and
at each step merges two closest (most similar) clusters.
The clustering process finishes whenever a single cluster
remains or the similarity distance between two closest
clusters does not meet a threshold. During our
experiments, while manually evaluating the resulting
ontologies, we observed that a threshold value of 85% is
the minimum reasonable distance value. The similarity
distance between two clusters is based on average
dictionary-based affinity between entries of two clusters.
The complexity of distance computation is of O(n2) due to
need of cross-examination of each entry in one cluster
against those in other clusters. From lexical analysis point
of view, entries within a cluster are forming a synonym
set. Thus, concepts in one cluster are pair-wise augmented
with is Similar To relationship (e.g. Image isSimilarTo
Picture).

Fig. 2: Life-Path of Ontology Organizations

IV. ONTOLOGIES ON THE SEMANTIC WEB
We present an algorithm that provides natural language
(NL) paraphrases for OWL Ontologies on the Semantic Web
Our goal is to ensure both fluency (readability) and
accuracy of the output , in terms of preserving the meaning
conveyed by its description logic formalism. The approach
described is a generic domain-independent one,and is
completely automated.

With the advent of OWL, and its subset OWL-DL, semantic
web content is backed by a precisely-defined Description
Logic (DL). This property means that the meaning of
semantic web content will always be clear and potentially
useful to an intelligent agent, or reasoner-equipped
software application. However, concept definitions (OWL

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 04 | Apr-2016 www.irjet.net p-ISSN: 2395-0072

 © 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1516

Classes) are specified in the language of logic, requiring
humans to understand this logical language in order to
decipher the meaning of concepts. For end users of
semantic web enabled applications, this may pose a
usability problem in many important circumstances,
effectively creating a barrier for entry into the semantic
web. To remove this barrier, we have designed and
implemented a procedure for generating near Natural
Language (NL) paraphrases.

For a procedure such as ours to be widely useful, it has to
be not only robust but also domain-independent, able to
work with a large number of the concepts and ontologies
available. A domain-independent solution is desirable
because it can immediately make use of the numerous OWL
ontologies that already exist, modeling everything from
clinical and en- vironmental information (e.g., NCI and JPL)
to personal interests andrelationships (e.g., FOAF).

APPLICATIONS

Semantic Annotation: Recently, numerous tools for
semantically annotating text, images, video etc have been
developed. Most of these tools use ontologies for driving
the annotation process, allowing users to link their data
with entities in the ontology. In order to support accurate
and speedy annotation, NL description of the classes can be
provided in order to explain the meaning of the con cept
and to point out its correct usage.

Web-Service Advertising: OWL-S based semantic web-
services advertise themselves as instances of the service-
profile. Rendering NL paraphrases of these service-profile
instances can make web-service descriptions more
accessible to end-users.
Web-Policy (/Rules) Description: In, the authors showed
that
Web-Service policies can be represented in OWL (using
syntactic sugar rules). However translating the WS-Policy
operators (wsp:All, wsp:ExactlyOne) in OWL produced
some non-trivial, complex class expressions. Policy
developers new to OWL might find it difficult to specify
constraints and capabilities of their web services when
working with these class expressions. NL paraphrases of
the policies will make their meaning more accessible,
thereby reducing the possibility of error, without losing the
intended semantics.

V EVALUATION
The proposed ontology learning mechanism is
implemented in Java by utilizing WordNet 3.0 as our
reference dictionary, JWSL [8] library for measuring
similarity between words, and MINIPAR dependency
parser [9] for identifying the patterns. The generated
ontology is represented in OWL format. During our
experiments we used the set of ca 15000 WSDL documents
from http://www.soatrader.com/web-services as a

representative set of Web services. The evaluation data-set
includes a sample subset of the services such that the
frequency of input and output element names covers 20%
(1858 unique terms) of names in the entire collected
dataset. In order to validate correctness of the generated
ontology, we manually constructed an ontology, using a
methodology developed by Küngas and Dumas [2]. We
refer to this handcrafted ontology as golden ontology in the
rest of this paper.

As the generated ontology should also satisfy web service
analysis requirements, we need to perform ontology
evaluation from two perspectives. First, from ontology
perspective we evaluate general ontological properties and
validate the quality of a generated ontology against the
golden ontology. Second, from web service annotation
perspective we examine the quality and quantity of
annotated web services using automatically generated
ontology with respect to the golden ontology. We leave the
latter evaluation case for the future work and focus on the
former perspective in the rest of this paper. We perform
evaluation of the automatically constructed ontology in two
stages. While in the first stage, evaluation is performed over
ontological classes, in the second stage ontological
instances (WSDL/XSD leaf node elements) are used in
evaluation. Fig. 2 presents the number of concepts and their
instances in the automatically generated ontology and the
golden ontology as well as the quantity of linguistically
common concepts between the two ontologies and their
instances.

5.1 Concept-level Comparison

Out of 1853 unique terms in our evaluation data-set, our
ontology learning system managed to process 1601 terms
and assign them to their representative concepts (1813
concept) while the rest of the terms were ignored due to
different reasons (i.e. containing meaningless names, not
complying with the determined patterns, etc). Clearly the
number of concepts in generated ontology is larger with
respect to the number of concepts in the golden ontology,
since in our approach new concepts emerge due to
following reasons. First, as a result of measuring linguistic
and dictionary-based differences between underlying
terms rather than considering actual semantics of terms
(e.g. “legalDisclaimer” and “TermsAndConditions” where
both convey same meaning while their ontological
representation leads to several classes). Second, ontological
concept discovery rules (Rule-1, Rule-2) break down a
compound noun into several interrelated concepts. Hence,
proportionally larger number of concepts is expected to be
generated by our system compared to the number of
instances.

For concept-level ontology comparison we exploited
Falcon-AO [11], which aligns ontologies in two phases: first
linguistic then structural (graph) matching. Authors of

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 04 | Apr-2016 www.irjet.net p-ISSN: 2395-0072

 © 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1517

Falcon-AO have pointed out that their tool cannot use
structural information for ontology alignment purpose if
the underlying ontology is very large such as in our case.
Hence, the ontology alignment result produced by Falkon-
AO solely represents linguistics similarity between aligned
ontologies. While the percentage of similar concepts over
the two ontologies is only about 62% with respect to the
concepts in the golden ontology, the number of instances
captured by those common concepts is relatively high
around 71% (1313 instances out of 1853). Since instance
level evaluation can be performed over more than two
third of the entire data set, a reasonable assessment can be
expected despite of deficiencies of concept matching.
Because the concepts in the golden ontology are not
augmented with any other relations (i.e. object properties),
we did not perform any comparison at this level.

5.2 Instance-level Comparison

For instance-level comparison we compute precision (P)
and recall (R) metrics to show the quality of our term
classification approach only for those instances, which are
assigned to the common concepts, which are presented by
the last grey column in Fig. 2. Let’s consider E as the set of
instances belonging to those common concepts in a golden
ontology, C (correct) as the number of instances in set E,
which are classified correctly in the generated ontology, I
(incorrect) as the number of instances in E which are
misplaced (i.e. they are not assigned to the same concepts
as instructed by the golden ontology) and M (missing) as
the number of instances which appear in set E but they are
not classified under the common concepts in generated
ontology. Based on these definitions, we compute the
precision and recall as following:

Fig 3: Quantity of concepts & instances in generated
ontology compared to golden ontology.

The size of E in our system is 1313, which equals C+M+I
where C = 968, I = 60 and M = 278. According to (1), we
have precision of 85% and recall of 78%. High precision is
achieved due to the syntactic quality of terms, following
the syntactic patterns which we used during harvesting,
and finally complying with respect to dictionary meanings
in WordNet [10]. The quality of syntactic processing is
also boosted by utilization of an auxiliary table to uncover
known acronyms and compound nouns, which
consequently improves both recall and precision.

VI RELATED WORKS

Proposed mechanisms for (semi-)automatic
annotation and matching of web services are aiming for
machine learning techniques and they diverge in
availability of external resources, training data sets,
quality and quantity of dataset and main purpose of
annotation. Some machine-learning-based approaches
such as [7] ,proposed by Heβ et al. need initially to train
their system in order to generalize (semantic of training
data) and predict semantic labels for (similar) unseen web
services.

As we target a large repository of absolutely not-
annotated ad-hoc web services from different domains,
applicability of such techniques is not clear. Similarly to
our approach, Guo et al. [1] leveraged relation between
words in phrases to establish ontological relationships
between acquired concepts. While the authors tackle pair-
wise service matching solution by aligning the generated
ontology fragments, we intend to create an ontology to be
utilized for analysis of web services. In addition, Guo et al.
[1] take advantage of active domain experts and
knowledge of web services domains in annotation. Neither
of these two resources are practically available in our case
due to size of the data set and lack of additional meta-
knowledge about services.

 In a slightly similar work, Sabou et al. [6] described an
automatic extracting method that learns domain
ontologies from textual documentation attached to web
services. Due to the fact that around 95% of web services
in our data set come with no textual documentation, the
applicability of their approach is not applicable in our
case.

Several tools for semantic annotation of web services and
transformation to semantic web service representations
such as OWL-S by ASSAM [7], and WSDL-S/SA-WSDL [15]
by Radiant [14] have been proposed. The aforementioned
tools follow a semi-automatic approach for selecting the
most appropriate domain ontology (for annotation
purpose) and then mapping WSDL elements to respective
ontological concepts. Due to explicit expert user
intervention and reliance on pre-determined domain
ontologies for annotation purpose, applicability of such
solutions for large-scale annotation of web services is
impractical despite of the fact that these solutions tend to
provide high-quality annotations.

VII CONCLUSIONS AND FUTURE WORK

In this paper we presented an ontology learning approach
to be used for matching web services in large scale in the
absence of core ontology. The preliminary results show
that the generated ontology captures correctly around
52% of entire data set, hence, providing a reasonable basis

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 04 | Apr-2016 www.irjet.net p-ISSN: 2395-0072

 © 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1518

for web services matching in practical solutions. Our
approach generates ontologies, which can be used for
automated construction of annotation heuristics such as
used by Küngas and Dumas [2] in their semi-automatic
cost-effective semantic annotation methodology for web
services interfaces. Thus one of the contributions of the
ontology learning approach presented in this paper is to
reduce the number of man-hours required in a cost-
effective annotation scheme even further. As a future work
we are planning to enhance the proposed ontology
learning approach such that better coverage of
annotations could be achieved automatically.

We have presented an algorithm that generates concise,
accurate NL paraphrases for OWL Concepts based on a
variety of NLP techniques and implemented it in an
ontology engineering toolkit, SWOOP. We have conducted
a promising preliminary user evaluation, and plan to
conduct formal user studies to fully evaluate the
contribution of our work.

REFERENCES

1. Guo, H., Ivan, A., Akkiraju, R., Goodwin, R.: Learning

Ontologies to Improve the Quality of Automatic Web
Service Matching, In: IEEE Int.Conference on Web
Services (ICWS 2007), pp. 118--125 (2007).

2. Küngas, P., Dumas, M.: Cost-Effective Semantic
Annotation of XML Schemas and Web Service
Interfaces. In: IEEE Int. Conference on Services
Computing, IEEE Computer Society, pp. 372--379
(2009).

3. European Collaborative Clamour Project: Linguistic
Work Package Report.:
http://www.statistics.gov.uk/methods_quality/clamo
ur/coordination/downloads/Clamourde
c2000IRn2.doc (2000).

4. Lieber, R.: Morphology and Lexical Semantics.
Cambridge University Press (2004).

5. Bourigault, D., Jacquemin, C.: Term extraction + term
clustering: an integrated platform for computer-aided
terminology. In: 9th Conference on European Chapter
of the Association for Computational Linguistics, pp.
15--22, ACL, Morristown, NJ, (1999).

6. Sabou, M., Wroe, C., Goble, C., Mishne, G.: Learning
domain ontologies for Web service descriptions: An
experiment in bioinformatics. In Proceedings of the
14th international Conference on World Wide Web,
pp. 190--198, ACM, Japan (2005).

7. Heß, A., Johnston, E., Kushmerick, N.: ASSAM: A Tool
for Semi-Automatically Annotating Semantic Web
Services. LNCS, vol. 3298, pp. 320--334, Springer
(2004).

8. Pirrò, G., Seco, N.: Design, Implementation and
Evaluation of a New Similarity Metric Combining
Feature and Intrinsic Information Content. LNCS,
vol.5332, pp. 1271--1288, Springer-Verlag (2008).

9. Lin, D.: Dependency-based Evaluation of MINIPAR.
Workshop on the Evaluation of Parsing Systems, First
Int. Conf. on Learning Resources and Evaluation, Spain
(1998).

10. Miller, G. A.: WordNet: A Lexical Database for English.
Communications of the ACM, Vol. 38, No. 11: 39--41
(1995).

11. Hu, W., Qu, Y.: Falcon-AO: A practical ontology
matching system. Web Semantic, vol. 6, no. 3, pp. 237--
239 (2008).

12. Zhou, L.: Ontology learning: State of the art and open
issues. Information Technology and Management, vol.
8, pp. 241--252 (2007).

13. Gruber, T. R.: Toward principles for the design of
ontologies used for knowledge sharing, Journal of
Human Computer Studies, vol. 43, no. 5/6, pp. 907--
928 (1993).

14. Radiant: WSDL-S/SAWSDL Annotation Tool.
http://lsdis.cs.uga.edu/projects/meteor-
s/downloads/index.php?page=1.

15. Kopecký, J., Vitvar, T., Bournez, C., Farrell, J.: SAWSDL:
Semantic Annotations for WSDL and XML Schema, In:
IEEE Internet Computing, vol. 11, No. 6, pp.60--67,
(2007).

http://www.statistics.gov.uk/methods_quality/clamour/coordination/downloads/Clamourdec2000IRn2.doc
http://www.statistics.gov.uk/methods_quality/clamour/coordination/downloads/Clamourdec2000IRn2.doc
http://www.statistics.gov.uk/methods_quality/clamour/coordination/downloads/Clamourdec2000IRn2.doc
http://www.statistics.gov.uk/methods_quality/clamour/coordination/downloads/Clamourdec2000IRn2.doc
http://www.statistics.gov.uk/methods_quality/clamour/coordination/downloads/Clamourdec2000IRn2.doc
http://www.statistics.gov.uk/methods_quality/clamour/coordination/downloads/Clamourdec2000IRn2.doc
http://www.statistics.gov.uk/methods_quality/clamour/coordination/downloads/Clamourdec2000IRn2.doc

