
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 04 | Apr-2016 www.irjet.net p-ISSN: 2395-0072

 © 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1496

SQL Injection Attack :Detection and Prevention

Swayam Charania1, Vidhi Vyas 2

1Student, MCA Department, Sardar Patel Institute of Technology, Mumbai,India
2Student, MCA Department, Sardar Patel Institute of Technology, Mumbai,India

---***---

Abstract— Web applications comprise of a large degree of

functionalities and usefulness. As more and more sensitive

data is available on internet attackers are becoming more

interested in such data revealing which can cause massive

damage. SQL injection is an attack that is used to infiltrate the

database of any web application that may lead to alteration of

database or disclosing important information. As applications

get web based ,attackers provide infected sql queries which

can modify the queries and extract configuration information.

Stored procedure are considered being more secure, but is not

the case .It is necessary to protect web based applications.

Detection of Sql Injection becomes necessary and trivial ,where

there exist vulnerable datasets. Prevention of such attacks

provide a way to secure these datasets ,keeping them

unharmed from potential attackers. Various detection

measures have been elaborated and described. Tools used in

the detection techniques such as sqlmap have been briefly

described.

Keywords: SQL Injection, SQLMAP,Postgre-

SQL,CANDID,WAVES

1. INTRODUCTION

SQL Injection (SQLIAs) is a technique where attackers can

inject SQL queries through input of a web page .Such SQL

commands can alter the database and modify the contents.

They may even retrieve important information thus harming

the integrity of the database.SQL Injections is usually known

as an attack vector for websites, but is normally to attack any

type of SQL Database. The general concept is to bypass the

server level and gain access to the backend. Web applications

are often vulnerable to attacks, that provide attackers easily

access to the application's underlying database.One such tool

depicted is SQL Map, which checks a website for its

vulnerability. In this paper we also list classification,

detection of SQL Injections and preventive measures to avoid

SQLIA’s

 Web Applications

SQLIA’s take place largely in web applications, thus working
of a web application needs to be understood first. Web
applications comprise of three tiers. The first tier is on the
users side and has a basic browser. The second tier contains a
dynamic content generator write in php or jsp. Tier three is
where the database resides. This is the tier prone to SQL
Injection attack. The vulnerabilities in a web application of a
system can be exploited to implement this attack.
Vulnerabilities include lack of data validations, insufficient
concatenation of variables etc. Main categories that the
injection attacks are divided into are:

1) First order attack: The attackers write malicious
queries which causes the code to be executed
immediately.[4]

2) Second order attack: The attacker modifies the
contents of the database using SQL statements like
insert and delete. An attack is then executed by
another action.[4]

3) Lateral Attack: The attackers plays with implicit
functions. Example: use of To_char() by changing the
environment variables.[4]

 2. CLASSIFICATION

Classification of SQL Injection can be classified broadly as:

Tautologies: This type of attack uses conditional queries

and inserts SQL tokens into them, which proves to be always

true.

Illegal/Logically Incorrect Queries: Attackers use the

database error messages to find vulnerabilities in the

applications.

 Union Query: Attackers inject infected queries to the

existing safe queries by using the UNION operator and thus

retrieve information form the database.

Piggy-backed Queries: Attackers attach delimiters such as

“;” to the original query. Doing so causes multiple queries to

be executed in which the first query is legitimate followed by

infected and illegitimate queries. queries. Normally the

initial query is trusted query, whereas following queries

could be illegitimate.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 04 | Apr-2016 www.irjet.net p-ISSN: 2395-0072

 © 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1497

Stored Procedure: Stored procedure is a subset of database

that a developer could create an extra abstraction layer on

the database. Depending on specific stored procedure on the

database there are different ways to attack.

Blind Injection: Developers hide error messages which can

be useful to attackers to plan and SQL Injection Attack. In

this situation the attacker comes across a static page

designed by the developers. Hence, attacks is difficult but not

impossible as the attackers can ask True/False questions by

using SQL commands.

 Timing Attacks:

By using timing delays in the database’s response the

attacker is able to gather the information by observing the

amount of time taken to execute a query. The attacker

generates a long query using if-else statements and thus

measuring the amount of time taken for the page to load to

determine if the injected statement is true.

Alternate Encodings: ASCII and Unicode encodings are used

by the attackers so that they can escape from the filter which

scans “special characters” Example: Using “char(44)” in place

of a single quote is an example of alternate Encodings.

.AN EXAMPLE OF DETECTION OF SQL INJECTION

ATTACKS

 Consider a URL for downloading a
file.“http://localhost:3627/StaticWeb/dDownload.aspx?id=4
EC898F0-57AA-401F-82F5-5F0D856D4301” link is
generated as a result of a web request from the user. If an
attacker modifies this query as id='abc'; insert into table
name values(7,'xyz').This query leads to a generation of two
queries ,one for downloading a file and other for inserting
values in a table. This will lead to ambiguous changes in
database. Similarly consider a login page where user enters in
text fields. Such input data can be modified by the attacker so
as to attack the database system with SQL injection. A method
can be proposed to detect this attack. Web applications can
be static and dynamic.[1] In static web application, in which
responses generated to a web request are fixed. So it will be
generating a fixed query set for static web applications. In
case of dynamic applications, queries are varied and thus
there is a need to monitor every query generated by users.

In case of dynamic web application, each activity of a valid
user can be categorized. Each web request can be
categorized, considering a web application of a blog, like
login, adding a web article, reading an article, commenting on
that article etc. can be used to differentiate the legit mapping.
Using this categories non-deterministic mapping can be made
accurate up to some extent. This practice session are
performed in attack less environment. A user can be granted
a web service, input validations are performed and only then

the SQL queries are generated. Before retrieving the result
from the database a mapping is performed wherein the SQL
queries will be checked against a mapping pattern. pattern.
Matching will be done on the basis of web request that is
diseased with either SQL injection, and the subsequent web
query generated which includes the same attack bypassed
from previous phase. If matching valid pattern are found then
only that query will be fired over database to fetch the results
otherwise will be treated as potential threat and can be
accessed by admin.

Fig 1.Systematic flow of dynamic web application

Another method can be adopted which builds an efficient
detection system between the attacker and the web server,
which can shield the web server from the attack. Moreover,
some detection system only detect vulnerabilities at the
HTTP header in the GET methods. This method in addition to

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 04 | Apr-2016 www.irjet.net p-ISSN: 2395-0072

 © 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1498

headers, analyzes the payload(Deep Packet Inspection)of the
packets. The first stages can be used to generate different
types of SQLI attacks using tools like SQLMap. Infected data
packets can be captured by Hardware Network Analyzer.[2]

 It inspects the payload contained within the HTTP packet
between the client and server and uses a packet matching
algorithm to detect if the packet contained an attack. It also
ranks the attack based on the type of information acquired
and notifies the admin. Identification of the possible threats is
necessary, and for this a misuse pattern concept can be
applied. A misuse rule is such that it helps programmers
design a protective measure for it. In turn the developers can
determine as to how a misuse is performed and use it for
disaster recovery and incident response purposes.

Numerous other detection methods are deployed to
detect SQLIA attacks.

WAVES, a black box technique is used for testing web
applications for SQLIA vulnerabilities.[3]

SAFELI,[5] a framework that uses static analysis proposed by
Xiang Fu and Kai Qian for compile time identification of
SQLIA vulnerabilities. SAFELI can scan the source code and
will be able to detect possible vulnerabilities that cannot be
discovered by black-box vulnerability scanners.

CANDID [6,7] modifies web applications written in Java
through a program transformation. It mines the
programmers intended query structure with the actual query
issued and thus detects the SQL Injection attack.

 3. DETECTING SQLIAs WITH SQLMAP

Introduction

 SQLMap is an open source tool. It is used to automate the
process of detecting and exploiting SQL injection
vulnerabilities of a web application. It is capable to taking
over database servers. Using SQLMap an attacker or tester
can perform database fingerprinting, execute commands on
the underlying operating system, retrieve DBMS details, view
or delete database data and even access the file system of the
server.

Databases Supported with SQLMap

MySQL, Oracle, Microsoft SQL Server

PostgreSQL: PostgreSQL is an object-relational database
management system which as a database server ,has a
primary function to store data securely, and to allow retrieval
at the request of other software applications.

Microsoft Access: Microsoft Access is a DBMS (also known as
Database Management System) from Microsoft that combines
the relational Microsoft Jet Database Engine with a graphical
user interface and software-development tools.

IBM DB2: DB2 is a family of relational database management
system (RDBMS) products from IBM that serve a number of
different operating system platforms.

SQLite: SQLite is ACID-compliant and implements most of the
SQL standard, using a dynamically and weakly typed SQL
syntax that does not guarantee the domain integrity.

SAP MaxDB: MaxDB is an ANSI SQL-92 (entry level)
compliant relational database management system (RDBMS)
from SAP AG. MaxDB is targeted for large SAP environments
e.g. mySAP Business Suite and other applications that require
enterprise-level database functionality.

SQLMap supports six SQL injection techniques: boolean-
based blind, time-based blind, error-based, UNION query-
based, stacked queries and out-of-band. It is able to recognize
hash format of passwords.

Detecting Vulnerability of a Website using SQLMAP

A vulnerable website provides free access to penetration
testing such as SQLIAs and cross side scripting attacks. It thus
becomes necessary to detect such vulnerabilities at an early
stage so as to make it attack-proof. The following case study
shows how an SQLIA is detected using SQLMAP.

For our testing purposes we have used a DVWA(Damn
Vulnerable Website Application).

Damn Vulnerable Web App (DVWA) is a PHP/MySQL web
application that is damn vulnerable. Its main goals are to be
an aid for security professionals to test their skills and tools
in a legal environment, help web developers better
understand the processes of securing web applications.[11]

The following is a step by step demonstration of detecting
SQLIAs.

Step1:Open the Kali Linux command prompt and enter the
following command.

 Fig 2 : Command for checking vulnerability

The first half of the command contains the website URL on
which SQLIA has to be detected, the further part contains the
cookie value retrieved from the Advanced Cookie Manager .

 Fig 3: Location of the cookie

The above commands results into the following output which
provides the backend details of the website.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 04 | Apr-2016 www.irjet.net p-ISSN: 2395-0072

 © 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1499

 Fig 4 :Backend type revealed

 Fig 5:Parameter name that is injectable

Here ,the backend detected is MySQL,also the results show
that the parameter “ID” is injectable . This shows that the
website is vulnerable to SQLIA and thus a probable SQL
Injection Attack is detected.

Step 2: SQLMAP test to detect if the tables of a website can be
retrieved or not.

Using the following command on a website enables
developers to check if their tables are prone to SQLIA attack.

 Fig 6:Command for retrieving tables .

Executing the preceding command results in the following
output if the website is vulnerable.

 Fig 7: Tables in the Database

Step 3: Similarly, to retrieve columns of a database table the
query can be modified as

 Fig 8: Command for retrieving columns

An attacker may retrieve all columns in a database using this
which may lead to a loss of integrity and confidentiality of a
website. If the website is a transactional one , the tables

may reveal all the data of the users which may include credit
card details and pins triggering a credit card fraud.

The above command provides the following output where all
the columns are revealed.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 04 | Apr-2016 www.irjet.net p-ISSN: 2395-0072

 © 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1500

 Fig 9: Columns Retrieved

The output shows the columns present in the user table. An
attacker may choose any of the columns to alter the table.

Step 4: Fetching values of columns from the table. Using the
following statements allow a user to retrieve the all the
records of a table.

 Fig 10: Command for fetching user details

The above statements reveal all user details

 Fig 11: All user details retrieved.

The usernames along with the hashed passwords have been
retrieved from the User table. A simple modification in the
column record value causes a user to lose his credentials.

The records have been fetched as they were when the
database of the website was populated.

 Fig 12: Table containing User details

Thus, an SQLIA can be detected using SQLMAP and the
website applications can be validated for these attacks.

Example of a scenario where SQLIA will not be successful.
Consider a website with strong validations . Using SQLMAP
we detect whether it is SQLIA proof or not. Given that the
website has strong validations, the following output is
produced.

 Fig 13: Example showing a parameter that is not
injectable

The line clearly states that “Submit” parameter might not be
injectable.
Thus building strong websites has become a need of the hour.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 04 | Apr-2016 www.irjet.net p-ISSN: 2395-0072

 © 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1501

 4. PREVENTING SQL INJECTION ATTACKS

WAVES: A black box technique, WAVES is efficient in testing
web applications for SQL vulnerabilities. It identifies and
locates all points in the web application that can be easily
found to inject SQLIAs. During the attack phase WAVES,
targets specific vulnerabilities as well as monitors the web
application by machine learning.[8]

SQLPrevent: SQLPrevent is yet another tool that uses an
HTTP request interceptor. When SQLPrevent is deployed into
the web server the original data flow is modified. The HTTP
requests are stored in a thread-local storage. The SQL
interceptor captures the SQL statements and passes them to
the detector module. Thereafter, the HTTP request from the
thread local storage is tested for its contents of SQLIA. If the
statement is infected it would not be sent to the database.[9]

SQLDOM and Safe Query Objects use the concept of query
encapsulation that prevent untrusted access to databases.
They use a type-checked API which uses systematic query
building. Input filtering and strict user type checking is
applied in addition to the API. The only reason the
approaches fail is because the developer must learn new
programming languages. [10]

JDBC Checker: Usually an attacker targets mismatches in a

query string that can cause vulnerabilities in a database. JDBC

checker is one such tool that prevents such techniques and

bars them from gaining access to the database. This tool is

capable of capturing SQLIAS that target queries that are not

syntactically and type correct.

WebsSARI works on sanitized input that has is produced as a

result of several predefined set of filters. It uses static

analysis to analyze taint flows.

The only reason this tool proves disadvantageous is due to its

requirement for adequate preconditions that cannot be

expressed and the some filters are omitted.

 Security Gateway is a proxy filtering system that strictly

filters input patterns rules on the data going to a Web

application. Thus, for transferring parameters from web

pages to servers the developers use a Security Policy

Descriptor Language (SPDL).Thus it proves useful for

developers in deciding which data should be filtered and

what patterns must act on the data.

5. CONCLUSION

 This paper outlines the various methods for detecting and
preventing SQL Injection Attacks. For dynamic web
application, a system is proposed which can help detect
SQLIAs. In addition, a tool SQLMap is outlined. This tool
demonstrate the possible vulnerabilities in the web
application by deliberately injecting an SQLIA and thus helps
developers to detect the loopholes in the design and

eradicating it, which provides security from SQL Injection
Attack.

SQL Injections have been long studied and various tools have
been proposed, each having their share of limitations.
Penetration attacks have been prevalent in the web based
domain, web developers can use the detection tools and
prevention tools to secure their web applications from the
attackers.

ACKNOWLEDGEMENT

 The authors express their sincere gratitude to Prof. Aarti
M Karande for her constant support and encouragement in
carrying out the research work.

 REFERENCES

[1] Piyush A. Sonewar, Nalini A. Mhetre “A Novel Approach
for Detection of SQL Injection and Cross Site Scripting
Attacks”, International Conference on Pervasive
Computing (ICPC)..

[2] Amith Pramod, Agneev Ghosh, Amal Mohan, Mohit
Shrivastava and Dr. Rajashree Shettar,"SQLI Detection
System for a safer Web Application",2015 IEEE
International Advance Computing Conference (IACC)

[3] Atefeh Tajpour,Mohammad JorJor zade
Shooshtari,"Evaluation of SQL Injection Detection and
Prevention Techniques",2010 Second International
Conference on Computational Intelligence,
Communication Systems

[4] Bharti Nagpal,Naresh Chauhan,Nanhay Singh Angel
Panesar,"Tool Based Implementation of SQL Injection
for Penetration Testing",International Conference on
Computing, Communication and Automation
(ICCCA2015).

[5] Xiang Fu , Kai Qian. SAFELI–SQL Injection Scanner Using
Symbolic Execution. Proceedings of the 2008 workshop
on Testing, analysis, and verification of web services and
applications. (2008). pp 34-39: ACM

[6] Sruthi Bandhakavi, Prithvi Bisht, P.
Madhusudan,CANDID: Preventing SQL Injection Attacks
using Dynamic Candidate Evaluations, 2007,
Alexandria,Virginia, USA, ACM.M. Young, The Technical
Writer’s Handbook. Mill Valley, CA: University Science,
1989.

[7] Prithvi Bisht, P. Madhusudan. CANDID: Dynamic
Candidate Evaluations for Automatic Prevention of SQL
Injection Attacks. Proceedings of the 14th ACM
Conference on Computer and Communications Security.
2007. USA: ACM, pp 1–38

[8] Y. Huang, S. Huang, T. Lin, and C. Tsai. Web Application
Security Assessment by Fault Injection and Behavior
Monitoring. In Proceedings of the 11th International
World Wide Web Conference (WWW03), May 2003.

[9] P.Grazie., PhD SQLPrevent thesis. University of British
Columbia (UBC) Vancouver, Canada.2008.

[10] R. McClure and I. Kr¨uger. SQL DOM: Compile Time
Checking of Dynamic SQL Statements. In Proceedings of
the 27th International Conference on Software
Engineering (ICSE 05), pp 88–96, 2005.

