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Abstract: One of the major challenges of the twenty-first 
century is developing technologies that reduce greenhouse 
gas emissions. One technology with the potential to address 
these challenges is plug-in (hybrid) electric vehicles 
(PHEVs). PHEVs derive much of their energy from the 
electric power grid rather than gasoline. If the projections of 
large PHEV penetration are true, they will put considerable 
additional stress onto existing power grids. It has been 
proposed that the appropriate scheduling of PHEV charging 
can reduce this stress through demand response. The PHEV 
charging scheduling has multiple facts. The focus of this 
paper is to develop algorithmic approaches to deal with the 
uncertainties associated with PHEV charging. The scheduling 
problem is modeled as a multi-stage online decision problem 
where input parameters of future charging requests and 
power grid status are not revealed when current charging 
decisions are made. We present two algorithms: consensus 
and expectation that use predictions about the future to 
make scheduling decisions. 
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I.INTRODUCTION 
Modern power grids are large, complex systems and 
managing them is challenging. Many power grid 
management tasks are modeled as scheduling problems, e.g., 
the maintenance of power grid components [21]. A classic 
and important scheduling grid management task is the unit 
commitment problem (see [13] for a survey). Various 
models and algorithms were developed for this problem 
including alternating current [7], direct current [27], and 
stochastic variations [11], [10]. The problem of unit 
commitment has become increasingly difficult in recent 
years as renewable  energy has increased its share of 
generation mixes in today’s grid, as described by a recent 
report [14]. The integration of renewable energy sources 
into the power grid is one of the features promised for next 
generation power grids (sometimes called smart grids). 
While intelligent unit commitment can address part of this 
problem, this paper considers another smart grid scheduling 
technology, demand-side management [25], in the presence 

of intermittent renewables. Demand-side management is a 
task where loads are scheduled to reduce peak power 
consumption and take advantage of cheap, clean renewable 
energy sources [18], [9]. For example, scheduling algorithms 
were proposed to manage deferrable loads based on 
forecasting [26]. A specific demand side scheduling problem 
involves charging batteries for plug-in (hybrid) electrical 
vehicles (PHEVs) [17]. 
The projected increase in PHEV adoption has the potential to 
add substantial loads to existing power grids. The vehicle to- 
grid (V2G) is a conceptualized system through which PHEVs 
interact with power grids. In a V2G system, PHEVs are used 
to balance load by charging during off-peak periods and 
discharging power when generation capacity is low. In a 
recent paper [24], a long-term planning location model was 
proposed to site battery exchange stations for optimal 
charging, discharging, and battery swapping. The 
counterpart of this problem is daily operation; the short 
term scheduling of electric vehicle charging to minimize the 
impact of additional demand on existing power grids [23], 
[19], [8], which this paper seeks to address. 
In this paper, we consider the problem of centralized 
scheduling vehicle battery charging in the presence of 
renewable generation. PHEV charging is a multifaceted 
problem that includes communication between PHEVs and 
power grids, how to charge PHEVs with physical capacity 
constraints, and generation dispatch to minimize impact of 
additional loads from PHEV.  
 
The focus and contribution of this paper are on developing 
stochastic online scheduling algorithms that deal with 
various uncertainties associated with battery charging 
through sampling future scenarios. More specifically, these 
uncertainties include states of PHEVs, i.e., arrival time of 
future requests for charging, departure times of PHEVs, 
required energy to charge future PHEVs, and the state of an 
electric power system (generation capacity and electricity 
cost). In addition to these uncertainties, scheduling decisions 
are made in real time. Therefore, scheduling algorithms need 
to be efficient and adjustable under computational time 
limits. Online optimization [16] and online stochastic 
optimization [28] have been applied to make real-time 
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decisions under uncertainties and time constraints and its 
application is proposed here. In the literature, online 
stochastic scheduling problems have been studied in the 
context of package scheduling, job scheduling [12], [4], [1] 
with success proving evidence for its application to the 
problem discussed here. 
 
The key contributions of this paper include developing a 
generalization of online stochastic optimization to 
problems with multiple decisions at every time step and 
designing efficient scheduling algorithms for PHEV battery 
charging. 
 
 
II. ONLINE ALGORITHMS 
 
The online algorithms are assumed to have access to a 
probability distribution characterizing the uncertainty about 
the future (generation capacity, electricity prices, PHEV 
requests). This distribution can be thought of as a black box 
that produces samples of possible futures. Given that the 
uncertainty in this problem does not depend on the 
decisions to schedule batteries, we are able to use the online 
stochastic optimization framework of [5], which offers some 
attractive computational advantages over approaches such 
as multi-stage stochastic programming. 
 
Figure - 1. In this figure, line 1 initializes the objective 
function to 0. Lines 2-9 define the loop for executing the 
decision making at each time step t. Line 3 collects all the 
PHEV requests that can be scheduled at time t. This includes 
any available requests from t -1 and new requests that arrive 
at time t. Line 4 chooses a set of requests to charge at time t. 
This is the point where different online algorithms may be 
implemented to determine the choice of requests to schedule 
(the function CHOOSEREQUEST). This part of the algorithm 
is also an important generalization of the framework of [5], 
as it returns a set of requests to schedule instead of a single 
request. As discussed here, this feature makes some of the 
traditional online algorithms more complex. Lines 5-8 
update the schedule. Finally, line 9 updates the objective 
function by adding the expense for charging batteries and 
the cost for the departure of any uncharged batteries. Notice 
that Y(t)is the sum of uncharged units in period t (∑åi:di=t 
yi), and yi is used in the linear program (1)-(4) to account for 
uncharged units for each PHEV. More formally ,the function 
AVAILABLEREQUESTS is defined as 
 
AVAILABLE REQUESTS(t) – 
The function EXPIREDREQUESTS is defined by 
 EXPIREDREQUESTS(t) – 
ONLINE OPTIMIZATION(t) 
1 z →0; 

2 for t ; 

3do I ← AVAILABLEREQUESTS(t) NEWREQUESTS(t); 
4      I ←  CHOOSEREQUESTS(I ; t); 

5       

6for I  i; 

 ; 

8  

9 |i| + *y; 
 
Fig. 1. The basic structure of the online algorithms 
 
Our first online algorithm implements CHOOSEREQUESTS in 
a greedy fashion, scheduling as many batteries as possible at 
a time t, with a preference on earliest departure time. This 
algorithm is similar to the Earliest Deadline First algorithm 
described in the paper [26]. We define S(I,a) be a subset of I 

such that |S(I,a)| ≤ a. For i  S(I,a), di is no larger than dj for 

any j  I \ S(I,a). The notation argmax|S(I,a)| returns a subset 
with the maximal size. 
 
Latest Delay Our second online algorithm implements 
CHOOSEREQUESTS by waiting as long as possible to 
schedule requests. More formally it is presented in Figure-3 
where SUBSET(S,a) returns a maximal-sized set of elements. 
 
CHOOSEREQUEST-G(I, t) 
 
1. return argmax|S[I,g(t)]|; 
 
Fig. 2. Greedy algorithm 
 
S with size ≤ a. 
 
CHOOSEREQUEST-LD(I , t) 
 

1 S ←  
2 return SUBSET[S , g(t)]; 
 
Consensus Our third algorithm adopts the idea of consensus 
from [4]. In the consensus algorithm, at a time t a number of 
samples of possible futures are considered. Each sample is 
solved and the decision that occurs the most often at time t is 
chosen. This algorithm can be thought of as maximizing the 
probability of achieving an optimal solution to the future. 
The biggest difference between the consensus algorithm of 
[4] and [5] is that they make a single decision at a time step. 
Here we must choose a set of decisions. The simplest way to 
generalize the consensus algorithm to sets of decisions is to 
consider all possible combinations of decisions on individual 
PHEV charging and evaluate them according to the 

consensus idea (it treats each combination,  , of 
decisions as a single decision). This is described more 
formally in Figure 4. In this figure, lines 1-2 initialize the 
consensus scores for the combinations to 0. Lines 3-7 
generate K samples and determine the optimal solution to 
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each sample. Line 4 generates a sample of future requests , 
generation capacity g, and electricity costs to a user-
specified time horizon ∆. Line 5 creates a set of PHEV 
requests. Line 6 solves the battery scheduling problem .Line 
7 increments the consensus score for the combination of 
batteries scheduled at time t. 
This algorithm needs K to be prohibitively large in order 
to accurately score the consensus across all the 
combinations. Instead, we approximate consensus as seen 
in Figure 5. In this approximation, there are two consensus 
scores, one on each individual PHEV and one on the 
number of unused slots of the grid. In this figure, lines 1-2 
initialize the consensus scores of individual PHEV battery 
requests to be 0. Lines 3-4 initialize the consensus scores 
for the number of slots to leave unfilled in the grid to be 0. 
Lines 6-12 generate K samples and determine the optimal 
solution to each sample. Line 6 generates a sample tuple of 
future requests. Line 7 creates a set of PHEV requests. Line 
8 solves the battery scheduling problem using TP. Lines 9-
10 compute increments of the consensus score for the 
charging requests scheduled at time t. Lines 11-12 
increment the consensus score for the number of slots 
unused at time t. 
 
CHOOSEREQUEST-C(I, t)- 

1 for i  COMB(I); 

2do m(i) 0; 

3for k 1…………K; 

4 do  

5 A  

6  ; 

7  ; 

8 return arg max( ) m(i); 
In this paper, we assume that the underlying power grid is 
well designed and the only capacity constraint is on the 
power generation. As long as there is enough total power, 
it can be delivered to satisfy the load from PHEVs. The 
absence of physical constraints and stability issues of a 
power grid allows us to focus on dealing with the 
uncertainties related to PHEV charging; we leave grid 
constraints for future work.Also, PHEVs are assumed to be 
charged at a single rate, e.g., the level-2 charging rate 
(240VAC, single-phase, 40Amp). This constant rate is 
modeled as a unit called a slot for measuring energy. For 
any given period, a PHEV can consume only one slot of 
energy for battery charging. In turn, battery demand l(i) 
and generation capacity g(t) are also measured in units of 
slot. 
 
CHOOSEREQUEST-C(I; t) 

1 for i  I; 
2 do m(I) 0; 

3 for j  0………….g(t); 

4 do m (j)  0; 
5 for k ←1…………..K; 

6 do ; 

7 A  ; 

8 ; 

9 for i  

10 dom(i)   m(i) + 1; 

11 forj  0……g(t) - | |; 

12 dom(j)  m(j) + 1; 

13 I   ; 

14  

15 doI  
16 returnI ; 
 
In the consensus algorithm, the computing time is |K|O(TP) 
for solving |K| transportation problems. Expectation Our 
fourth algorithm captures the uncertainty using expectation 
[12] instead of consensus. The expectation approach can be 
formulated as a multi-stage stochastic program [6]. However 
the sample paths are independent from period t and there 
are no non-Anticipatively constraints after the period t. Thus 
the online expectation approach can be used [12]. Once again 
the expectation approach, as stated, is designed to make a 
choice about a single decision at any time step. Similar to 
consensus, the simplest generalization of expectation is to 
evaluate all possible combinations of decisions as seen in 
Figure 6. Lines 1-2 set the expectation scores for the 
combinations of I to be 0. Lines 3-8 compute the expected 
value for each combination for K samples (Line 3). The 
number of samples is smaller than consensus in order to 
keep the running time of the algorithm roughly equivalent 
(the time complexity arises from the number of times TP is 
executed). Line 4 generates the samples and line 5 creates 
the set of battery requests to consider. Lines 6-8 consider 
each combination of battery requests to schedule at time t 
and calculates the optimal solution given that schedule for 
time t. 
 
CHOOSEREQUEST-E(I, t) 

1 for i  COMB(I); 
2 do m(i) ← 0; 
3 for k ← 1…………K; 

4 do ; 

5 A  ; 

6 for i  COMB(I); 

7 do ; 

8 m(i) m(i)+z( ); 
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9 return argmax(i  COMB(I))*m(i); 
 
 
IV. EXPERIMENTS 
 
For our experimental setting, we use a V2G system that 
contains 1000 PHEVs. The time horizon has T = 24 
discrete periods  (0 …..23). The arrival time a(i)of a PHEV 
is a discrete random variable uniformly distributed 
between 0 and 23. Given an arrival time, the departure 
time is a discrete uniform variable between a(i) and 23. 
Each PHEV driver is assumed to be rational in their 
charging request. Thus, the number ofrequested slots to be 
charged is selected uniformly at random from 0 to di – a(i). 
In this model, the PHEV states are generated 
independently. 
 
CHOOSEREQUEST-E(I, t) 

1 TP-E(I , t); 

2 return (t); 
 
In this V2G system, without loss of generality, we 
assumethat the maximum capacity of the grid is fixed and 
we adopt a load curve  (Fig. 8) to simulate the base load 
for each period. Residual capacity is obtained by 
subtracting simulated base load from the maximum 
capacity and then scaled proportionally to 1000 PHEVs. 
Fig. 8 shows the average residual capacity g(t)for 12 
periods and the average cost, which is proportional to 1 / 
g(t) . 
 
 

 
 
Fig.1. Averaged residual grid capacity and cost. 
 
If we generate 100 independent cases for 1000 PHEVs and 
the 12-period grid states and ran the five algorithms for each 
case. For Consensus and Expectation algorithms, 5 samples 
will be generated at each period to simulate the future. In the 
first scenario, we assume that the residual capacity is large 
enough to satisfy all charging demand in any period. The 
average residual capacity and average cost over 100 cases 
are shown in Fig 8. The utilization ratio is used to compare 
the charging schedules. The utilization ratio is the total 

number of slots charged at period t divided by the residual 
capacity in the period. High utilization ratios indicate that 
the grid is at its capacity limit. 
 
 

 
Fig.2 utilization ratio at each period and      percentage of 
unfilled demands. 
 
In Fig.2, Latest Delay and Greedy have highly unevenly 
distributed utilization ratios and exhibit peaking behavior. 
Latest Delay has high utilization ratios during the late 
periods and Greedy has high ratios in the middle periods 
when the residual capacity drops. The other three methods 
behave similarly and spread the loads across a range of 
periods since the cost is inversely proportional to the grid 
capacity. In this scenario, the residual capacity is large 
enough such that there are no unfilled batteries in the 
Deterministic case. Fig. 9 shows the percentage of unfilled 
slots of the batteries as a function of the total number of 
requested slots for each of 100 cases. As expected, the Latest 
Delay algorithm producesunfilled slots in a large number of 
cases since the algorithm is likely to push the grid to its limit 
(discussed above) and it has no alternative to rearrange 
schedules. The other three algorithms will have few cases 
where small percentages of slots are unfilled. It is important 
to note that since the penalty cost for unfilled slots will be 
high, the objective value will be dominated by the penalty 
cost. The Deterministic model has the lowest total cost since 
it optimizes the charging scheduling with all the future 
information known. This is a theoretical lower bound for the 
best possible performance of an online algorithm. To 
compare the cost of battery charging, we compute the ratio 
of cost obtained from each algorithm to optimal cost 
(competitive ratio). 
 
V. CONCLUSION 
  In this paper, we investigated the scheduling problem of 
PHEV charging as a V2G system. We formulated here, the 
deterministic problem as a linear program, discussed two 
greedy heuristics, and introduced two online optimization 
algorithms, Consensus and Expectation to deal with the 
uncertainties associated with future states of PHEV battery 
charging and the power grid. In a simulated V2G system, it is 
shown that under low variance conditions, Expectation and 
Consensus are strong candidates for centralized control of 
PHEV charging, however, in high variance situations, it is 
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best to take in consideration about charging in order to 
ensure most PHEVs are charged to avoid the optimal 
charging conditions. 
 
 
VI. FUTURE OUTCOMES 
There are several future directions to be explored. 
Decentralized charging scheduling models are well needed 
to account for selfish charging behaviors of PHEVs who may 
be unlikely to accept centralized control. Recent work has 
suggested online stochastic optimization can be used in a 
decentralized framework [22]. In addition, certain price 
schemes can be developed to achieve overall social welfare 
under decentralized environments which will be likely 
benefited towards maintaining balance between ecology and 
technology in the roads. 
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