
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 03 | Mar-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 219

REDUCING THE SEARCH SPACE FOR INTERESTING PATTERNS FROM

UNCERTAIN DATA

Dr. A.Meiappane 1, P.Ganesh Guru Teja 2, Meganathan.I 3 , Nilavazhagan.K 4

1 Associate Professor, M.Tech., Ph.D, Dept of Information Technology, MVIT, Puducherry,India

234 B.Tech, Dept of Information Technology, MVIT, Puducherry,India

---***---
Abstract - Big data is a term for referring too large and
complex data sets that are difficult to process and store with
the existing technologies. Data in the world is growing so fast
in such a way that it will never be the same. The noise in that
data is also increasing in the same manner, this causes a big
problem in the mining. When searching in uncertain data it
consists of the existential probabilities. User are only
interested in an tiny portion of data. There exists many
techniques for working with big data algorithms to mine the
uncertain data but they are not giving satisfiable results. So
we propose an algorithm which will be using the map reduce
model with the apriori algorithm to mine the uncertain big
datasets.

Key Words: Big Data; Data Mining; MapReduce; Apriori;
Search Space; Hadoop;

1.INTRODUCTION

Big data is a broad term for datasets so large or complex
that traditional data processing applications are inadequate.
Challenges include analysis, capture, data curation, search,
sharing, storage, transfer, visualization, querying and
information privacy. The term often refers simply to the use
of predictive analytics or certain other advanced methods to
extract value from data, and seldom to a particular size of
data set. Accuracy in big data may lead to more confident
decision making, and better decisions can result in greater
operational efficiency, cost reduction and reduced risk.
Analysis of data sets can find new correlations to spot
business trends, prevent diseases, combat crime and so on.
Scientists, business executives, practitioners of medicine,
advertising and governments alike regularly meet difficulties
with large data sets in areas including Internet search,
finance and business informatics. Datasets are growing
rapidly in part because they are increasingly gathered by
cheap and numerous information-sensing mobile devices,
aerial (remote sensing), software logs, cameras,
microphones, Radio-Frequency Identification readers,
wireless sensor networks. Every day 2.5 exabytes
(2.5×1018) of data is created. One question for large
enterprises is determining who should own big data
initiatives that affect the entire organizations technology
advances, high volumes of valuable data such as streams of
banking, financial, marketing, telecommunication, biological,
medical, life science, and social data are generated in various

real-life applications in modern organizations and society.
This leads us into the new era of Big data [18], which refer to
interesting high-velocity, high value, and/or high-variety
data with volumes beyond the ability of commonly-used
software to capture, manage, and process within a tolerable
elapsed time. Hence, new forms of processing data are
needed to enable enhanced decision making, insight, process
optimization, data mining and knowledge discovery. This
drives and motivates research and practices in Big data
analytics [1], [23] and Big data mining [3],[20]. Having
developed systematic or quantitative processes to mine and
analyse Big data allows us to continuously or iteratively
explore, investigate, and understand past business
performance so as to gain new insight and drive science or
business planning. To handle Big data, researchers proposed
the use of a high-level programming model called
MapReduce to process high volumes of data by using parallel
and distributed computing [25] on large clusters or grids of
nodes, commodity machines, which consist of a master node
and multiple worker nodes. As implied by its name,
MapReduce involves two key functions: “map” and “reduce”.
An advantage of using the MapReduce model is that users
only need to focus on (and specify) these “map” and “reduce”
functions without worrying about implementation details for
(i) partitioning the input data, (ii) scheduling and executing
the program across multiple machines, (iii) handling
machine failures, or (iv) managing inter-machine
communication.

2. BACKGROUND

 Here, we provide some background information about
(A) mining uncertain data, (B) mining with constraints, (C)
the MapReduce model and (D) mining with the MapReduce
model.

A. Mining Frequent Patterns from Uncertain Data

Let (i) Item be a set of m domain items and (ii) X = {x1, x2, . . . ,
x k } be a k-itemset (i.e., a pattern consisting of k items),
where X ⊆ Item and 1 ≤ k ≤ m. Then, a transactional database
is the set of n transactions, where each transaction tj ⊆ Item
(for 1 ≤ j ≤ n). The projected database of X is the set of all
transactions containing X . Unlike precise databases, each
item xi in a transaction tj = {x1, x2,…, xk} in an uncertain
database is associated with an existential probability value
P (xi, tj), which represents the likelihood of the presence of xi
in tj [11]. Note that 0 < P (xi, tj) ≤ 1. The existential
probability P (X, tj) of a pattern X in tj

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 03 | Mar-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 220

It is then the product of the corresponding existential
probability values of every item x within X when these items
are indepen- dent [11]: P (X, tj) = x∈X P (x, tj). The expected
support expSup(X) of X in the database is the sum of P (X, tj)
over all n transactions in the database

where P(x, tj) is the existential probability value of item x
intransaction tj. With this notion of expected support, existing
tree-based algorithms—such as UF-growth [14], CUF-growth
[15] and PUF-growth [16]—mine frequent patterns from
uncertain data as follows. The algorithms first scan the
uncertain database once to compute the expected support of
all domain items (i.e., singleton itemsets). Infrequent items
are pruned as their extensions/supersets are guaranteed to
be infrequent. The algorithms then scan the database a
second time to insert all transactions (with only frequent
items) into a tree (e.g., UF-tree [14], CUF-tree [15], or PUF-
tree [16]). Each node in the tree captures (i) an item x, (ii) its
existential probability P(x, tj), and (iii) its occurrence count.
At each step during the mining process, the frequent patterns
are expanded recursively.A pattern X is frequent in an
uncertain database if expSup(X) ≥ a user-specified minimum
support threshold minsup. Given a database and minsup, the
research problem of frequent pattern mining from
uncertain data is to discover from the database a complete
set of frequent patterns having expected support ≥ minsup.

B. Mining Frequent Patterns that Satisfy User-Specified
Constraints
An existing constrained frequent pattern mining framework
[9], [10], [19] allows the user to use a set of SQL-style
constraints to specify his interest for guiding the precise
data mining process so that only those frequently occurring
sets of market basket items satisfying the user-specified
constraints are found. This avoids unnecessary computation
for mining those uninteresting frequent patterns. Besides
market basket items, the set of constraints can also be
imposed on items, events or objects in other domains. The
following are some examples of user constraints. Constraint
C1 ≡m in(X.Snowfall) ≥ 4cm expresses the user interest in
finding every frequent pattern X such that the minimum
amount of snowfall among all meteorological records in X is
at least 4cm. Similarly, C2 ≡ max(X.Temperature) ≤ −10 ◦C
says that the maximum temperature among all
meteorological records matching a pattern X is at most −10
◦C. Constraint C3 ≡ X.Location = Anchorage expresses the user
interest in finding every frequent pattern X such that all
vents in X are held in Anchorage, AK, USA; C4 ≡ X.Weight ≥
32kg says that the weight of each object in X is at least 32kg.
Constraints C5 ≡ sum(X.Snowfall) ≤ 15cm says that the
cumulative snowfall on all selected meteorological records
in X is at most 15cm; C6 ≡ diff(X.Temperature) =
max(X.Temperature) − min(X.Temperature) ≤ 20 ◦C says
that the difference between the maximum and minimum
temperatures in X is at most 20 ◦C. User-specified constraints
can generally be categorized into several overlapping classes
according to the properties that they possess. The first four
aforementioned constraints in particular can be categorized

into a popular class of constraints called succinct anti-
monotone (SAM) constraints, which possess the properties
of both succinctness and anti-monotonicity.

Definition 1: An itemset SSj ⊆ I t e m is a succinct set if it
can be expressed as a result of selection operation σp
where (i) σ is the usual SQL-style selection operator, (ii) p is a
selection predicate and (iii) Item is a set of domain items. A
powerset of items SP ⊆ 2Item is a succinct powerset if there is
a fixed number of succinct sets SS1, . . ., SSk ⊆ Item such that
SP can be expressed in terms of the powersets of SS1, . . ., SSk
using set union and/or set difference operators. A constraint
C is succinct [10] provided that the collection of patterns
satisfying C is a succinct powerset.

Definition 2: A constraint C is anti-monotone [10] if and
only if all subsets of a pattern satisfying C also satisfy C.
A frequent pattern X is valid in an uncertain database
if such a frequent pattern also satisfies the user-specified
constraints. Given (i) an uncertain database, (ii) minsup and
(iii) user-specified constraints (e.g., the SAM constraints), the
research problem of constrained frequent pattern mining
from uncertain data is to discover from the database a
complete set of patterns having expected support ≥ minsup
(i.e., frequent patterns), which also satisfy the user-specified
constraints (i.e., valid patterns).

C. The MapReduce Programming Model As a high-level
programming model for processing vast amounts of data,
MapReduce [6] usually uses parallel and distributed
computing on clusters or grids of nodes (i.e., computers). The
ideas behind MapReduce can be described as follows. As
implied by its name, MapReduce involves two key functions:
“map” and “reduce”. The input data are read, divided into
several partitions (sub problems), and assigned to different
processors. Each processor executes the map function on
each partition (subproblems). The map function takes a pair
of key, value data and returns a list of key, value pairs as an
intermediate result: map: key1, value1 → list of key2, value2 ,
where (i) key1 & key2 are keys in the same or different
domains, and (ii) value1 & value2 are the corresponding
values in some domains. Afterwards, these pairs are shuffled
and sorted. Each processor then executes the reduce
function on (i) a single key from this intermediate result
together with (ii) the list of all values that appear with this
key in the intermediate result. The reduce function
“reduces”—by combining, aggregating, summarizing,
filtering, or transforming the list of values associated with a
given key (for all k keys) and returns (i) a list of k pairs of
keys and values, (ii) a list of k values, or simply (iii) a single
(aggregated or summarized) value: reduce: key2, list of
value2 →list of key3, value3 reduce: key2, list of value2 → list
of value3, or reduce: key2, list of value2 → value3, where (i)
key2 is a key in some domains, and (ii) value2 & value3 are
the corresponding values in some domains. Examples of
MapReduce applications include the construction of an
inverted index as well as the word counting of a document.

D. Mining Frequent Patterns Using the MapReduce
Programming Model

Earlier works on MapReduce focused either on data
processing [6] or on some data mining tasks other than

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 03 | Mar-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 221

frequent pattern mining (e.g., outlier detection [7], structure
mining [24]). Recently, Lin et al. [17] proposed three Apriori
based algorithms called SPC, FPC and DPC to mine frequent
patterns from precise data. Among them, SPC uses single-pass
counting to find frequent patterns of cardinality k at the k-the
pass (i.e., the k-th database scan) for k ≥ 1. FPC uses fixed
passes combined-counting to find all patterns of cardinalities
k, (k + 1), ..., (k + m) in the same pass or database scan. On the
one hand, this fixed-passes technique fixes the number of
required passes from K (where K is the maximum cardinality
of all frequent patterns that can be mined from the precise
data) to a user-specified constant. On the other hand, due to
combined-counting, the number of generated candidates is
higher than that of SPC. In contrast, DPC uses dynamic-passes
combined-counting, which takes the benefits of both SPC and
FPC by taking into account the workloads of nodes when
mining frequent patterns with MapReduce. Like these three
algorithms, our proposed algorithm also uses MapReduce.
However, unlike these three algorithms (which mine frequent
patterns from precise data using the Apriori-based approach),
our proposed algorithm mines frequent patterns from
uncertain data using a tree-based approach. Note that the
search space for frequent pattern mining for uncertain data is
much larger than that for precise data due to the presence of
the existential probability values.

3. OUR ALGORITHM FOR MINING UNCERTAIN BIG
DATA WITH MAPREDUCE
 Given (i) uncertain Big data, (ii) user-defined minsup,
(iii) a user-specified constraint C (e.g., a SAM constraint), the
research problem of constrained frequent pattern mining
from uncertain Big data is to discover from Big data a
complete set of patterns having expected support ≥ minsup
and satisfying C (i.e., valid frequent patterns).
In this section, we propose our algorithm—which uses
MapReduce—to mine valid frequent patterns from high
volumes of uncertain data in a tree-based pattern-growth
fashion (i.e., in a divide-and-conquer fashion). The algorithm
uses two sets of the “map” and “reduce” functions during the
Big data mining process: (A) One set for mining frequent
singletons and (B) another set for mining frequent non-
singleton patterns.
A. Mining Valid Frequent Singletons from Big Data
The key idea behind how our proposed algorithm mines
frequent patterns (both singletons and non-singletons) that
satisfy SAM constraints is based on the following
observations.
Observation 1 : Due to succinctness, we can precisely
enumerate all and only those patterns that satisfy the SAM
constraints by using a member generating function. For
example, the set of patterns satisfying
C1 ≡ min (X.Snowfall) ≥ 4cm,
which expresses the user interest in finding every frequent
pattern X such that the minimum amount of snowfall among
all meteorological records in each X is at least 4cm, is a
succinct powerset. Thus, the set of patterns satisfying C1

can be expressed as 2σSnowfall ≥ 4cm(Item). The
corresponding member generating function can be
represented as {X | X ⊆ σSnowfall ≥4cm (Item) }, which
precisely enumerates all and only those patterns that satisfy
C1: All these patterns must be comprised of only records
with snowfall ≥ 4cm. Consequently, valid frequent patterns
for C1 would be those frequent ones among the valid
patterns satisfying C1.
Observation 2 : Due to anti-monotonicity, if a pattern does
not satisfy the SAM constraints, all its supersets are
guaranteed not to satisfy the SAM constraints. Thus, any
pattern that does not satisfy the SAM constraints can be
pruned. With the above observations, our proposed
algorithm mines frequent patterns that satisfy the user-
specified SAM constraints by performing the following key
steps. First, our algorithm reads high volumes of uncertain
Big data. As each item in the uncertain Big data is associated
with an existential probability value, the algorithm computes
the expected support of all domain items (i.e., singleton
patterns) by using MapReduce. The expected support of any
pattern can be computed by using Equation (1). Moreover,
when computing singleton patterns, such an equation can be
simplified to become the following:

where P(x, tj) is an existential probability of item x in
transaction tj. Specifically, the algorithm divides the
uncertain Big data into several partitions and assigns them
to different processors. The map function receives
transaction ID, content of that transaction as input. For
every transaction tj, the map function emits a key, value pair
for each item x ∈ tj. The question is: What should be the key
and value in the emitted pair? A native attempt is to emit x, 1
for each occurrence of x ∈ tj. It would work well when
mining precise data because each occurrence of x leads to an
actual support of 1. In other words, occurrence of x is the
same as the actual support of x when mining precise data.
However, this is not the case when mining uncertain data.
The occurrence of x can be different from the expected
support of x when mining uncertain data. For instance,
consider an item d with existential probability of 0.9 that
appears only once in the entire uncertain Big database. Its
expected support may be higher than that of another item f,
which appears three times but with an existential probability
of 0.2 in each appearance. Then, expSup({d }) = 0.9 > 0.6 =
expSup({f }).Hence, instead of emitting x, 1 for each
occurrence of x ∈ t j, our algorithm emits x, P(x, tj) for each
occurrence of x ∈ tj. In other words, the map function can be
specified as follows:
 For each tj ∈ partition of the uncertain Big data do
 for each item x ∈ tj do
 emit x, P(x, tj) .
This results in a list of x, P(x, tj) pairs with many different
x and P(x, tj) for the keys and values. Afterwards, these
x, P(x, tj) pairs are shuffled and sorted to form x, list of

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 03 | Mar-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 222

P(x, tj) . Each processor then executes the reduce function on
these shuffled and sorted x, list of P(x, tj) pairs and applies
constraint checks on every item x to obtain the expected
support of only valid x (i.e., {x } that satisfies the SAM
constraint CSAM). In other words, the reduce function can
be specified as follows:
For each x ∈ x, list of P(x, tj) do
if {x } satisfies CSAM then
set expSup({x }) = 0;
for each P(x, tj) ∈ list of P(x, tj) do
expSup({x }) = expSup({x }) + P(x, tj);
if expSup({x }) ≥ minsup then
emit {x }, expSup({x }) .
In a high-level abstract view, the set of the map and reduce
functions for mining valid frequent singletons from Big data
can be described as follows: map: ID of transaction tj,
content of tj → list of x, P(x, tj) , in which the master node
reads and divides uncertain Big data in partitions. The
worker node corresponding to each partition then outputs
the x, P(x, tj) pairs for each domain item x. Then, the reduce
function sums all existential probabilities of x for each valid x
to compute its expected support: reduce: x, list of P(x, tj)
→list of valid frequent {x }, expSup({x }) .
Example 1: Let us consider a tiny sample set of an uncertain
Big database and its auxiliary information as shown
in Table I with (i) the user-defined minsup=0.9 and (ii) a
user-specified constraint CSAM ≡ min(X.Snowfall) ≥ 4cm
(which expresses the user interest in finding every frequent
pattern X such that the minimum amount of snowfall among
all meteorological records in X is at least
4cm). Based on the auxiliary information, we learn that
domain items a, b, c, e & f (but not d) satisfy CSAM.
Then, for the first transaction t1, the map function outputs
a, 0.9 , b, 1.0 , c, 0.5 , d, 0.9 , e, 1.0 , f, 0.2 . Similarly,
for the second transaction t2, the map function outputs
a, 0.8 , b, 0.8 , c, 1.0 , e, 0.2 , f, 0.2 ; for the third transaction t3,
the map function outputs a, 0.4 , f, 0.2 . These pairs are then
shuffled and sorted. Afterwards, the reduce Function is read
as, [0.9, 0.8, 0.4] , b, [1.0, 0.8] , c, [0.5, 1.0] , d, [0.9] , e, [1.0,
0.2] & f, [0.2, 0.2, 0.2] , and outputs {a }, 2.1 , {b }, 1.8 , {c },
1.5 & {e }, 1.2 (i.e., valid singletons and their corresponding
expected support). Note that the reduce function does not
read d, [0.9], let alone output {d}, 0.9, because {d} does not
satisfy CSAM. On the other hand, although the reduce
function reads f, [0.2, 0.2, 0.2] It does not output {f}, 0.6
because valid {f} is infrequent.
B . Min in g Valid Frequent Non - singleton Patterns from Big
Data After applying the first set of map-reduce functions, we
obtain all valid frequent singletons (i.e., domain items that
satisfy the user-specified constraints) and their associated
existential support values. The next step is an important and
computationally intensive step. Our proposed algorithm
rereads each transaction in the uncertain Big database to
form an {x}-projected database (i.e., a collection of
transactions containing x) for each valid frequent singleton
{x} returned by the first reduce function. The map function
can be specified as follows:

For each tj ∈ partition of the uncertain Big data do
for each {x } ∈ {x }, expSup({x }) do
emit {x }, prefix of tj ending with x .
As all valid patterns must be comprised of only valid
singleton
items (due to the succinctness and anti-monotonicity), our
proposed algorithm keeps only those valid singleton items
returned by the first reduce function in each prefix of tj
when forming an {x }-projected database. Note that no
additional constraint check is required when forming the
projected database or mining frequent patterns.
The worker node corresponding to each projected database
then builds appropriate trees (e.g., UF-tree, CUF-tree, or PUF-
tree) based on the projected databases assigned to the
worker node to mine every valid frequent non-singleton
pattern X (with cardinality k, where k ≥ 2). The worker node
also outputs X, expSup(X), i.e., every valid frequent non-
singleton pattern with its expected support:
For each {x } ∈ {x }-projected database do
build a tree for the {x }-projected database to find X;
if expSup(X) ≥ minsup then
emit X, expSup(X)
In a high-level abstract view, this second set of map-reduce
functions for mining valid frequent non-singleton patterns
from Big data can be described as follows: map: ID of
transaction tj, content of tj → list of valid frequent {x }, part
of tj with x , (5) in which the master node rereads and
divides uncertain Big data in partitions. The worker node
corresponding to each partition helps to form an {x }-
projected database for every valid frequent item x in the
transactions assigned to that partition. The {x}-projected
database consists of prefixes of relevant transactions (from
the uncertain Big database) that end with x. More precisely,
the worker node outputs {x}, portion of tj for forming the
{x}-projected database pairs. Then, the reduce function
shuffles and sorts these pairs of {x }- projected databases,
from which valid frequent non-singleton patterns can be
found and their expected support values can be computed:
reduce: valid frequent {x }, {x }-projected database→ list of
valid frequent X, expSup(X) . (6)
Example 2: Let us continue with Example 1, where
(i) minsup=0.9 and (ii) CSAM ≡ min(X.Snowfall) ≥ 4cm.
Recall that {a}, {b}, {c} and {e} are valid frequent singletons.
Our algorithm rereads the uncertain Big database. After
reading the first transaction t1, the (second) map function
outputs {b }, {a:0.9, b:1.0 } (where {a:0.9, b:1.0 } is a prefix of
t1 ending with item b), {c }, {a:0.9, b:1.0, c:0.5 } and {e },
{a:0.9, b:1.0, c:0.5, e:1.0 } (where {a:0.9, b:1.0, c:0.5, e:1.0 }
contains only valid frequent items—i.e., it does not contain
invalid item d). Note that this map function does not output
{a}, {a: 0.9} because {a: 0.9 } does not contain any valid
frequent item other than itself (i.e., such a prefix of t1 does
not contribute to the mining of non-singletons). Moreover,
this map function does not output{f }, a:0.9, b:1.0, c:0.5,e:1.0,
f:0.2 } either, but due to a different reason. The reason here
is because {f} is invalid. Similarly, after reading the second
transaction t2, the map function outputs {b }, {a:0.8,b:0.8 } ,

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 03 | Mar-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 223

{c }, {a:0.8, b:0.8, c:1.0 } and {e }, {a:0.8, b:0.8,c:1.0, e:0.2 } .
These pairs are then shuffled and sorted. Afterwards, the
reduce function reads {b}, {b}-projected database. Based on
this {b}-projected database (which consists of two sub
transactions {a: 0.9, b: 1.0} and {a: 0.8, b: 0.8}), a tree is built.
Consequently, valid frequent pattern {a, b} with an expected
support of 1.54 is found. Similarly, the reduce function reads
{c}, {c}-projected database. It builds a tree based on this {c }-
projected database (which consists of two sub transactions
{a:0.9, b:1.0, c:0.5 } and {a:0.8, b:0.8, c:1.0 }), and finds valid
frequent patterns {a, c }, {a, b, c } & {b, c } with expected
support values of 1.25, 1.09 & 1.3, respectively. The reduce
function then reads {e}, {e}-projected database. It builds a
tree based on this {e }-projected database (which consists of
two sub transactions {a:0.9, b:1.0, c:0.5, e:1.0 } and {a:0.8,
b:0.8, c:1.0, e:0.2 }), and finds valid frequent patterns{a, e } &
{b,e} with expected support values of 1.06 & 1.16.
To summarize, the first set of map-reduce functions discover
four valid frequent singletons (with their corresponding
expected support values): {a}, 2.1, {b}, 1.8, {c}, 1.5 and {e},
1.2. The second set of map-reduce functions discover six
valid frequent non-singleton patterns (with their
corresponding expected support values): {a, b }, 1.54 , {a, b, c
}, 1.09 , {a, c }, 1.25 , {a, e }, 1.06 ,{b, c }, 1.3 and {b, e }, 1.16 .
Hence, our algorithm finds a total of ten frequent patterns
satisfying CSAM.
C. Pushing Constraint Checks into the First Map Function
Recall from Section III-A that the first reduce function
applies constraint checks to verify whether {x } satisfies the
user-specified CSAM (i.e., if {x } is valid), then the reduce
function computes the expected support of valid singleton x
and returns only frequent singleton {x }. Alternatively, to
handle the user-specified SAM constraint CSAM, we could
push CSAM into the mining process earlier (by pushing it
into the map function instead of the reduce function as
shown in Section III-A). For instance, we could push the
constraint checking into the map function so that we only
emit x, P(x, tj) for each item x ∈ tj that satisfy CSAM:
For each tj ∈ partition of the uncertain Big data do
For each item x ∈ tj and {x} satisfies CSAM do
emit x, P(x, tj) .
Afterwards, these valid x, P(x, tj) pairs are shuffled and
sorted. Each processor then executes the reduce function on
the shuffled and sorted pairs to obtain the expected support
of x. In other words, an alternative reduce function can be
specified as follows:
For each x ∈ valid x, list of P(x, tj) do
set expSup({x }) = 0;
for each P(x, tj) ∈ list of P(x, tj) do
expSup({x }) = expSup({x }) + P(x, tj);
if expSup({x }) ≥ minsup then
emit {x}, expSup({x}) .
In a high-level abstract view, this alternative set of the map
and reduce functions for mining valid frequent singletons
from Big data can be described as follows:
map: ID of transaction tj, content of tj → list of valid x, P(x, tj)
, (7) in which the master node reads and divides uncertain

Big data in partitions. The worker node corresponding to
each partition then outputs the valid x, P(x, tj) pairs for each
domain item x. Then, the reduce function sums all existential
probabilities of x for each valid x to compute its expected
support: reduce: valid x, list of P(x, tj) →list of valid frequent
{x}, expSup ({x}). (8)
Example 3 : For comparison between the two approaches
for mining valid frequent singletons from Big data (i.e.,
comparing the current approach of pushing constraint
checks into the first map function with the approach of
pushing constraint checks into the first reduce function), let
us revisit
Example 1. We mine the same a tiny sample set of an
uncertain Big database as shown in Table I with (i) min su
p=0.9 and (ii) CSAM ≡ min(X.Snowfall) ≥ 4cm. Again,
based on the auxiliary information, we learn that domain
items a, b, c, e & f (but not d) satisfy CSAM. Then, for
the first transaction t1, the map function outputs a, 0.9 ,
b, 1.0 , c, 0.5 , e, 1.0 , f, 0.2 . Note that, by pushing the
constraint checks into the map function, we no longer emit
d, 0.9 —let alone perform any bookkeeping in the reduce
function—because {d } does not satisfy CSAM. Similarly,
for the second transaction t2, the map function outputs
a, 0.8 , b, 0.8 , c, 1.0 , e, 0.2 , f, 0.2 ; for the third transaction t3,
the map function outputs a, 0.4 , f, 0.2 . These
pairs are then shuffled and sorted. Afterwards, the reduce
function reads a, [0.9, 0.8, 0.4] , b, [1.0, 0.8] , c, [0.5, 1.0] ,
e, [1.0, 0.2] & f, [0.2, 0.2, 0.2] , and outputs {a }, 2.1 ,
 {b }, 1.8 , {c }, 1.5 & {e }, 1.2 as valid singletons and their
corresponding expected support values. Although the reduce
function reads f, [0.2, 0.2, 0.2] , it does not output {f}, 0.6
because valid {f } is infrequent. Note that, as the map
function does not emit d, [0.9] , the reduce function does not
need to read the invalid {d} and thus saves some
computation. As observed from the above example, there are
pros and cons between the two approaches for mining valid
frequent singletons from Big data. For instance, the approach
that pushes constraint checks into the first reduce function
(as presented in Section III-A) requires fewer constraint
checks because the constraint checks are delayed until all
pairs are shuffled and sorted. Consequently, it only performs
constraint checks on at most m domain items to see if they
satisfy CSAM. In contrast, the approach that pushes
constraint checks into the first map function (as presented
here in this section) performs constraint checks on all
occurrences of items in every transaction in the Big
uncertain database, which is normally. Hence, pushing
constraint checks into the reduce function is time-efficient
(due to the reduction in the number of constraint checks),
especially when the uncertain Big data consist of only a few
domain items such as DNA sequences (in which the number
of domain items are m=4 nucleobases “A”, “T”, “C” & “G”) or
RNA sequences (in which the number of domain items are
m=4 nucleobases “A”, “U”, “C” & “G”). On the other hand, the
approach that pushes constraint checks into the first map
function (as presented here in this section) requires less
bookkeeping because it emits x, P(x, tj) pairs only for those

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 03 | Mar-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 224

items that satisfy CSAM. Consequently, fewer pairs need to
be shuffled and sorted. Hence, pushing constraint checks into
the map function is both space-efficient (due to the reduction
in the number of pairs returned by the map function) and
time-efficient (due to the reduction in the number of pairs to
be shuffled and sorted), especially when high volumes of
high-variety data come at a high velocity such as Big data
streams.
D. Mining Frequent Patterns that Satisfy AM Constraints
So far, we have described how our proposed algorithm
mines uncertain Big data with MapReduce for frequent
patterns that satisfy user-specified SAM constraints.
Although
many of the commonly used constraints (e.g., the first four
constraints C1–C4 mentioned in Section II-B) possess the
properties of both anti-monotonicity and succinctness, there
are some constraints that do not possess both properties
(e.g.,
non-SAM constraints C5 & C6 in Section II-B). To handle
these non-SAM constraints, we exploit one of these
properties.
For instance, we exploit the property of anti-monotonicity.
Based on Definition 2, if a pattern X does not satisfy an anti-
monotone (AM) constraint CAM, then all its supersets do not
satisfy CAM. Hence, such an invalid X can be pruned as it
does not contribute to the mining of frequent patterns of
future (higher) cardinalities. In this case, we adapt our
algorithm by exploiting the property of anti-monotonicity as
follows. We reuse the same approach as described in Section
III-A or III-C to mine valid frequent singletons from an
uncertain Big database using the first set of map-reduce
functions. At the end of this step, the reduce function returns
a list of valid frequent singletons with their expected support
values. However, the second set of map-reduce functions for
handling AM constraints is different due to the following
observations.
Observation 3: Let V be the set of domain items that
individually satisfy the SAM constraints. Then, due to
succinctness and anti-monotonicity, any non-singleton
pattern X comprising items from V (i.e., X ⊆ V) is guaranteed
to satisfy the same SAM constraints. Thus, no constraint
checks need to be performed when mining valid non-single
to n patterns.
Observation 4: Let V be the set of domain items that
individually satisfy the AM (but not succinct) constraints.
Then, due to anti-monotonicity, n o t every non-singleton
pattern X comprising items from V is guaranteed to satisfy
the same AM constraints. In other words, X ⊆ V may be
invalid, and thus constraint checks need to be performed
when mining valid non-singleton patterns. Based on
Observation 4, we adapt our algorithm by performing
additional constraint checks in the second reduce function
for handling AM constraints (cf. the second reduce function
for handling SAM constraints described in Section III-B):
For each {x} ∈ {x}-projected database do
build a tree for the {x }-projected database to find X;
if expSup (X) ≥ minsup and X satisfies CAM then

emit X, expSup(X) .

4. EXPERIMENTAL RESULTS
In this section, we evaluate our proposed algorithm in
mining user-specified constraints from uncertain Big data.
We used different benchmark datasets, which include real-
life datasets (e.g., accidents, connect4, and mushroom) from
the UCI Machine Learning Repository available in
(http://archive.ics.uci.edu/ml/) and the FIMI Repository
(http://fimi.ua.ac.be/). We also used IBM synthetic datasets,
which were generated using the IBM Quest Dataset
Generator [2]. For our experiments, the generated data
ranges from 2M to 10M transactions with an average
transaction length of 10 items from a domain of 1K items. As
the above real-life and synthetic datasets originally
contained only precise data, we assigned to each item
contained in every transaction an existential probability
from the range (0,1]. All experiments were run using either
(i) a single machine with an Intel Core i3 2-core processor
(1.73 GHz) and 8 GB of main memory running a 64-bit
Windows 7 operating system, or (ii) the Amazon Elastic
Compute Cloud (EC2) cluster specifically, High-Memory
Extra Large (m2.xlarge) computing nodes
(http://aws.amazon.com/ec2).Experimental results show
that, in terms of accuracy, our algorithm returned the same
collection of valid frequent patterns as those returned by the
existing mining framework [9], [10], [19] for finding valid
frequent patterns from precise data. However, in terms of
flexibility, our algorithm is not confined to finding valid
frequent patterns from a database in which existential
probability values of all items are 1. Our algorithm is capable
of finding valid frequent patterns from any database, in
which existential probability values of all items are ranging
from 0 to 1. The same comments apply to the experimental
results for our similar experiment with a user-specified AM
constraint. Moreover, we also experimented with (i) an
uncertain database and (ii) a user specified SAM constraint
with 100% selectivity (so that every item is selected).
Experimental results show that, in terms of accuracy, our
algorithm returned the same collection of frequent patterns
as those returned by the UF-growth [14], CUF-growth [15]
and PUF-growth [16]. However, in terms of flexibility, our
algorithm is not confined to handling SAM constraints with
100% selectivity. Our algorithm is capable of handling SAM
constraints with any selectivity. Again, the same comments
apply to the experimental results for our similar experiment
with a user-specified AM constraint.
In the second experiment, we demonstrated the efficiency
of our algorithm. (e.g., < 20,000 seconds) than the runtimes
(e.g., > 120,000 seconds) required by UF-growth [14].
Moreover, shows that our algorithm led to high speedup
(e.g., 7 to 10 times) even with just 11 nodes. Furthermore,
show the runtimes of our algorithm decreased when the user
defined minsup increased. In the third experiment, we
demonstrated the benefits of constraint pushing in reducing
the search space of Big data mining. The benefits become
more obvious they show that, when selectivity decreased

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 03 | Mar-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 225

(i.e., fewer frequent patterns satisfy the constraints),
runtimes also decreased, because (I) fewer pairs were
returned by the map function, (ii) fewer pairs were shuffled
and sorted by the reduce function, and/or (iii) fewer
constraint checks were performed.

5. CONCLUSIONS

Existing algorithms mostly focus on association analysis
enabled by mining interesting patterns from precise
databases. However, there are situations in which data are
uncertain. As items in each transaction of these probabilistic
databases of uncertain data are usually associated with
existential probabilities expressing the likelihood of these
items to be present in the transaction, the search space for
mining from uncertain data is much larger than mining from
precise data. This matter is worsened as we move into the
era of Big data. Furthermore, in many real-life applications,
users may be interested in only a tiny portion of this large
search space. To avoid wasting lots of time and space in
computing all frequent patterns first and pruning
uninteresting ones as a post-processing step, we proposed in
this paper a tree-based algorithm that (I) allows users to
express their interest in terms of succinct anti-monotone
(SAM) constraints and (ii) uses MapReduce to mine
uncertain Big data for frequent patterns that satisfy the user-
specified constraints. As a result, our algorithm returns all
and only those patterns that are interesting to the users.
Moreover, although we focused mostly on handling SAM
constraints, we also discussed how our algorithm handles
constraints that are anti monotone (AM) but not succinct.

REFERENCES

 [1] P. Agarwal, G. Shroff, & P. Malhotra, “Approximate

incremental big- data harmonization,” in IEEE Big Data
Congress 2013, pp. 118–125.

[2] R. Agrawal & R. Srikant, “Fast algorithms for mining
association rules,” in VLDB 1994, pp. 487–499.

[3] A. Azzini & P. Ceravolo, “Consistent process mining
over Big data triple stores,” in IEEE Big Data Congress
2013, pp. 54–61.

[4] T. Condie, P. Mineiro, N. Polyzotis, & M. Weimer,
“Machine learning for Big data,” in ACM SIGMOD
2013, pp. 939–942.

[5] R.L.F. Cordeiro, C. Traina Jr., A.J.M. Traina, J.
 López, U. Kang, & C. Faloutsos, “Clustering very
 large multi-dimensional datasets with MapReduce,”
 in ACM KDD 2011, pp. 690–698.
[6] J. Dean & S. Ghemawat, “MapReduce: simplified data

processing on large clusters,” CACM 51(1): 107–113,
Jan. 2008.

[7] A. Koufakou, J. Secretan, J. Reeder, K. Cardona, & M.
Georgiopoulos, “Fast parallel outlier detection for
categorical datasets using MapRe- duce,” in IEEE
IJCNN 2008, pp. 3298–3304.

[8] A. Kumar, F. Niu, & C. Ré, “Hazy: making it easier to
build and maintain Big-data analytics,” CACM 56(3):
40–49, Mar. 2013.

[9] L.V.S. Lakshmanan, C.K.-S. Leung, & R.T. Ng,
“Efficient dynamic mining of constrained frequent sets,”
ACM TODS 28(4): 337–389, Dec. 2003.

[10] C.K.-S. Leung, “Frequent itemset mining with
constraints,” in Encyclo- pedia of Database Systems, pp.
1179–1183, 2009.

[11] C.K.-S. Leung, “Mining uncertain data,” WIREs Data
Mining and Knowledge Discovery 1(4): 316–329,
July/Aug. 2011.

[12] C.K.-S. Leung & F. Jiang, “Frequent itemset mining of
uncertain data streams using the damped window model,”
in ACM SAC 2011, pp. 950– 955.

[13] C.K.-S. Leung & F. Jiang, “Frequent pattern mining
from time-fading streams of uncertain data,” in DaWaK
2011 (LNCS 6862), pp. 252–264.

[14] C.K.-S. Leung, M.A.F. Mateo, & D.A. Brajczuk, “A
tree-based ap- proach for frequent pattern mining from
uncertain data,” in PAKDD 2008 (LNAI 5012), pp.
653–661.

[15] C.K.-S. Leung & S.K. Tanbeer, “Fast tree-based
mining of frequent itemsets from uncertain data,” in
DASFAA 2012 (LNCS 7238), pp. 272– 287.

[16] C.K.-S. Leung & S.K. Tanbeer, “PUF-tree: A compact
tree structure for frequent pattern mining of uncertain
data,” in PAKDD 2013 (LNCS 7818), pp. 13–25.

[17] M.-Y. Lin, P.-Y. Lee, & S.-C. Hsueh, “Apriori-based
frequent itemset mining algorithms on MapReduce,” in
ICUIMC 2012, art. 76.

[18] S. Madden, “From databases to big data,” IEEE
Internet Computing, 16(3): 4–6, May–June 2012.

[19] R.T., Ng, L.V.S. Lakshmanan, J. Han, & A. Pang,
“Exploratory mining and pruning optimizations of
constrained associations rules,” in ACM SIGMOD
1998, pp. 13–24.

[20] E. Ö lmezoğullari & I. Ari, “Online association rule
mining over fast data,” in IEEE Big Data Congress
2013, pp. 110–117.

[21] M. Riondato, J. DeBrabant, R. Fonseca, & E. Upfal,
“PARMA: a parallel randomized algorithm for
approximate association rules mining in MapReduce,”
in ACM CIKM 2012, pp. 85–94.

[22] Y. Tong, L. Chen, Y. Cheng, & P.S. Yu, “Mining
frequent itemsets over uncertain databases,” PVLDB,
5(11): 1650–1661, July 2012.

[23] H. Yang & S. Fong, “Countering the concept-drift
problem in big data using iOVFDT,” in IEEE Big Data
Congress 2013, pp. 126–132.

[24] S. Yang, B. Wang, H. Zhao, & B. Wu, “Effi dense
structure mining using MapReduce,” in IEEE ICDM
Workshops 2009, pp. 332–337.

[25] M.J. Zaki, “Parallel and distributed association mining: a
survey,” IEEE Concurrency, 7(4): 14–25, Oct.–Dec.
1999.

