
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 03 | Mar-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET ISO 9001:2008 Certified Journal Page 1926

Bidirectional Hadoop Kakfa Managing Messaging Bus

Prachi M. Birajdar 1, Kanchan Ujede 2, Rohini Yalawar 3, Kailas H. Biradar4 , Zeeshan Khan 5,

Swapnil Chaudhari 6

1234 Student, Computer Engineering Department, MMIT, Maharashtra, INDIA
5 Cloud Automation Java Developer , Maharashtra, INDIA

6 Professor, Computer Engineering Department, MMIT, Maharashtra, INDIA

---***---
Abstract - In this paper, We introduce Kafka, a robust

messaging system that we developed for collecting and

delivering high volumes of data. Our system incorporates

ideas from existing messaging systems, and is suitable for

message consumption. Using hadoop framework which

stores large amount of unstructured data. To develop

bidirectional communication via kafka connector ,the data

can be send without any data loss. Our expected results will

produce superior performance of kafka connector when

compared with two popular messaging system.

Key Words: Key word1, Hadoop , Kafka , zookeeper

1. INTRODUCTION

Hadoop is a combination of two domain that is distributed

system and bigdata. Hadoop has 100% guarantee to secure

of data and availability. In hadoop echo system data at one

place and code will move to the data.

1.1. HDFS

The Hadoop Distributed File System is based on the Google
File System and provides a distributed file system that is
designed to run on commodity hardware. It has many
similarities with existing distributed file systems. However,
the differences from other distributed file systems are
significant. It has to be low cost hardware and fault tolerant.
It provides high throughput access to application data and is
suitable for applications having large datasets.

Fig-1 : HDFS architecture

1.2 Zookeeper

Zookeeper is a thread and also demon process.
DataNode:actual work done by it.

NameNode If namenode will dead then it will give task on
one of the datanode which is nearer to that namenode.

1.3 Hbase

It is combination of hadoop distributed file system. It is used
to store all the information about entire the echo system.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 03 | Mar-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET ISO 9001:2008 Certified Journal Page 1927

2. KAFKA

Kafka is a managing messaging bus. In this kafka, partition is

takes place. partition consist of number of topics. Each

partition has a particular group id that is groupid1 are in two

partition and by default kafka is empty. It only includes

partition ,partition is done on physical memory.

Fig-2: kafka overview

2.1. MESSAGING TERMINOLOGY

Kafka ; Maintains number of messages in categories
called topics. We will call processes that publish messages to
a Kafka topic producers. We will call processes that subscribe
to topics and process the number of published
messages consumers. Kafka is run as a cluster. it is comprised
of one or more servers each of which is called a broker.

Producer : Producer produce data to the topics on their own
choice. The producer is responsible for choosing its own
messages and it is assign to which partition within the topic
and this is depends on producer.

Consumer : Consumers has its own consumer group name,
and each message published to a topic. It is delivered to one
consumer within each subscribing consumer. When all the
consumer instances have different consumer groups, then it
works like publish-subscribe. all messages are broadcast to
all consumers.

2.2. ALGORITHM

Step 1 : Producer will produce data.

Step 2 : Data will be stored in kafka bus.

Step 3 : Consumer will consume the data.

Step 4 : Consumer will produce data.

Step 5 : Data will stored in kafka bus .

Step 6 : Producer will consume the data.

2.3. WORKING

The bidirectional kafka is nothing but the messaging bus for

transferring the data,which is produced by the producer and

consume by the consumer and vice versa through kafka

connector

There are three modes of messaging system that are:

1. Write only (Producer)

2. Bidirectional

3. Sinker(Consumer)

Fig -3: Kafka with zookeeper

Kafka server is act as middleware which can send the details
of topics and partition to the Zookeeper server.

Zookeeper server is a thread and also demon process,

highly available that can monitor and co-ordinate kafka
server as well as overall system details. zookeeper detecting
addition and removal of kafka bus and consumers.
Kafka buffer contains multiple topics and partitions, Over all
details of topics and partitions cannot directly monitored by
zookeeper, kafka server contains all the details then kafka
server communicate with zookeeper.

A topic is a category, where messages are stored. For each
topic, the Kafka bus contains a partition. One partition
contains one or more than one topics.

If more than one producer wants to produce the data at
same time they have to wait, till one producer produce the
data into topic, after than other producer can produce the
data into topic. This will causes the delay. To avoid that delay
kafka bus allows multiple producer to produce their data
into separate topics and that related topics combined
together into one partition that have assigned a group id. If
some related topics is in different partitions then consumer
can consumes the related topics that have assigned same
group ID and consumes data

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 03 | Mar-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET ISO 9001:2008 Certified Journal Page 1928

Kafka bus contains all published data, that data can store for
some configurable time period which is consume by
consumer
Consumer consume the data from the topics. whatever the
data producer produces into topic that is received by
consumer. There is a list of topic into consumer side which
can helps the consumer to consume the data as per his
choice

Producer produce data to the topic and consumer consume
the data form topics, this is the flow of unidirectional kafka
connector.

It is also possible bidirectional that consumer produces the
data and producer consumes the data.

Consumer act as a producer that accept the data from end
user and produce to topic which can be stored into partition
that have assigned some group ID numbers which can be
helpful to consume the data at producer side. Using group ID
and the topic name, producer can receives data.

all system details means overall details about producer,
consumer, kafka server is monitored by the zookeeper.

All the modules are consistently giving acknowledgement to
the zookeeper.

If zookeeper doesn’t receive any acknowledgement from
the modules then it realies that module is dead or getting
down.

Produced data is delivered to consumer is known to
producer by getting acknowledgement from zookeeper
because consumer constantly communicate with zookeeper
and zookeeper then sends acknowledgement to producer.

Producer is sending data and at that time consumer gets
down then the data is stored into kafka bus. Whenever
consumer gets up he received that data, hence there is no
loss of data.

When producer is producing some data to kafka bus and
suddenly disconnects from kafka bus then remaining data
will be produced after producer gets up, it is not necessary to
send whole data. Hence duplication of data is avoided.

3. CONCLUSIONS

In this paper, we have presented a system to pass the
messages bidirectionally using kafka buffer.huge amount of
data can be send from producer to consumer and vice versa.
Moreover flexibility is increased.This work is the first step to
contribute to the real time implementation of the system.The
early encouraging results we obtained only aimed to
improve the quality of messaging system.Our present work
is limited to the text messages based only.In particular future
plans are to contribute to different languages. Additionally
we plan to desire a more sophisticated approach to when a
user should be penetrated into a black lists.

REFERENCES

[1] J. Dean, S. Ghemawat, “MapReduce: Simplified Data

Processing on Large Clusters,” In Proc. of the 6th
Symposium on Operating Systems Design and
Implementation, San Francisco CA, Dec. 2004.

[2] A. Gates, O. Natkovich, S. Chopra, P. Kamath, S.
Narayanam, C. Olston, B. Reed, S. Srinivasan, U.
Srivastava. “Building a High-Level Dataflow System on
top of MapReduce: The Pig Experience,” In Proc. of Very
Large Data Bases, vol 2 no. 2, 2009, pp. 1414–1425

[3] H. Carns, W. B. Ligon III, R. B. Ross, and R. Thakur. “PVFS:
A parallel file system for Linux clusters,” in Proc. of 4th
Annual Linux Showcase and Conference, 2000, pp. 317–
327.

[4] F. P. Junqueira, B. C. Reed. “The life and times of a
zookeeper,” In Proc. of the 28th ACM Symposium on
Principles of Distributed Computing, Calgary, AB,
Canada, August 10–12, 2009.

[5] K. V. Shvachko, “HDFS Scalability: The limits to growth,”
;login:. April 2010, pp. 6–16.

[6] T. White, Hadoop: The Definitive Guide. O'Reilly Media,
Yahoo! Press, June 5, 2009.

[7] F. P. Junqueira, B. C. Reed. “The life and times of a
zookeeper,” In Proc. of the 28th ACM Symposium on
Principles of Distributed Computing, Calgary, AB,
Canada, August 10–12, 2009.

[8] Apache Hadoop. http://hadoop.apache.org/

[9] Hadoop File System http://hadoop.apache.org/hdfs/

[10] Zookeeper http://hadoop.apache.org/zookeeper/

[11] Kafka http://sna-projects.com/kafka/

[12] JAVA Message Service:
http://download.oracle.com/javaee/1.3/jms/tutorial/1
_3_1fcs/doc/jms_tutorialTOC.html.

