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Abstract - In this paper, a Dynamic Matrix Controller 
(DMC) is applied in to a non linear spherical tank 
system. First, the liquid level system is approximated 
into a First Order Plus Time Delay (FOPTD) model by 
influencing a step test method. Simulation runs are 
carried out by considering the DMC algorithm in a 
closed loop. A similar test runs are also carried out 
with IMC based PI and conventional ZN based PI-mode 
for comparison analysis. The results clearly indicate 
that the incorporation of DMC in the control loop in 
spherical tank system provides a better tracking 
performance than the IMC and conventional PI mode. A 
robustness of the DMC is also analyzed. 
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1. INTRODUCTION  
 

Control of non linear process is most important 
criteria in the chemical industries. These kind of 
nonlinear systems exhibit not easy control problems 
due to their non-linear dynamic behavior, uncertain 
and time varying parameters. Especially, control of a 
level in a spherical tank is significant, because the 
change in shape gives rise to the non-linearity. The 
most basic and pervasive control algorithm used in the 
feedback control is the Proportional Integral and 
Derivative (PID) control algorithm. A simple PI 
controller design method has been proposed by Wang 
and Shao [1] that achieves high performance for a wide 
range of linear self-regulating processes. Ari 
Ingimundarson and Tore Hagglund [2] have compared 
the performance of PI, PID and dead-time 
compensating controllers based on the IAE criterion. A 
design method for robust PID controller to address the 
model uncertainty has been proposed by Ming Ge et al. 
[3]. Anandanatarajan et al. [4] have discussed the 
evaluation of a controller using variable transformation 
on a hemi-spherical tank which shows a better 
response than PI controller.  Later on this research 
field, Model Predictive Control (MPC)  begins and these 
kinds of controllers use a dynamical model of the 

process, to predict the effect of the future controller 
actions on the system output. MPC includes a series of 
algorithms among which the Dynamic Matrix 
Controller (DMC) is one of the most important ones. 
DMC were developed for Cutler and Ramaker [5], and it 
has been used in the industrial world, mainly in the 
petrochemical industries. In this paper, a Dynamic 
Matrix Controller (DMC) is applied in to a non linear 
spherical tank system and their performances are 
analyzed. DMC is a control technique where the 
process is represented by a first order. 

The paper is divided as follows: Section 2 and 3 
presents a brief description of the mathematical model 
of Spherical tank system, section 4 and 5 shows the 
methodology, algorithms of DMC,  section 6 presents 
the results and discussion and finally in section 7 the 
conclusions are presented. 

 
2. MODELING OF THE SYSTEM  

The Spherical tank system shown in figure 1 is 
essentially a system with nonlinear dynamics. The 
spherical tank setup has a maximum, height of H in cm 
Maximum radius of R in cm. The level in the tank at any 
instant is obtained by making mass balance as 
indicated below 
Rate of accumulation of mass in the tank =  
                   (Rate of Mass flow in)-(rate of mass flow out) 

   0

dV
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dt

     (1) 

   
4 3

3

V h    (2) 

   
( )

( ) 1

RH s t

Q s si 



   (3) 

Where ,  

 4 R ht s  and 
2

0

hs
Rt

Q s

    (4) 

 
 



          International Research Journal of Engineering and Technology (IRJET)      e-ISSN: 2395 -0056 

               Volume: 03 Issue: 03 | Mar-2016                       www.irjet.net                                                               p-ISSN: 2395-0072 

 

     © 2016, IRJET       |     Impact Factor value: 4.45     |      ISO 9001:2008 Certified Journal         |      Page 1398 
 

 
    Fig – 1: Spherical Tank Liquids level 

Let, 

     qI – Inlet flow rate to the tank (m
3 
/min) 

     qo – Outlet flow rate to the tank (m
3 
/min) 

     H – Height of the Spherical tank(m) 

      h- Height of the liquid level in the tank  

          at  any time „t‟(m) 

     R- Top radius of the Spherical tank (m) 

     r – Radius of the conical Vessels  

          at a particular level of height h(m) 

    A – Area of the Spherical tank (m
2
) 

3. BLACK BOX MODELING 
   In real time implementation, initially the level 
in the tank is maintained at steady state of 10% (5 cm) 
of the total height. A step size of 5% in DAC output is 
given to the system. The variation in level (%) is 
recorded against time until a new steady state is 
attained                       
Table .1. Transfer function model of Spherical tank at  
different operating points 

Level Transfer Function 
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From the experimental data the FOPTD model 
parameters such as process gain (Kp), time delay (D) 
and time constant (τp,) of the level process are 

determined. The same procedure is repeated at 50% 
and 66% of the total level and the identified transfer 
function models for all the above operating point is 
given in Table 1. 
 
4. FINITE STEP RESPONSE MODEL 

FSR models are obtained by making a unit step 
input change to a process operating at steady state. 
The model coefficients are simply the output values at 
each time step. Here,Si represents the step response 
coefficient for the ith sample time after the unit step 
change. If a non-unit step change is made, the output 
is scaled accordingly. 

 The step response model is the vector of step 
response coefficients, 
S = [ s1 s2 s3 s4 s5 . . . . . sN]T                     (5)                                                  
Where N is the model length  
5. DYNAMIC MATRIX CONTROL ALGORITHM 

Dynamic matrix control based on step response 
model, 

 =    +   + . . . +   +                

                                                      (6) 
This is written in the form  

 = +                                                 (7) 

Where, 
  is the model prediction at time step k 

 is the manipulated input N steps in the past. 

Note that the model – prediction output is unlikely to 
be equal to the actual measured output at time step k. 
Additive disturbance, 

= -                                                                             (8) 

Where 

 is actual measured output 

 is the model prediction 

The corrected prediction is then equal to the actual 
measured output at step k 

= +                                                                                                                          (9)                                                                                                                                                                                                      

Similarly, the corrected predicted output at the jth time 
step in future can be found from 

 =  +                                                                                               (10) 

= + + +      

                                                                                              (11) 
Where,      is the effect of future control 

moves 
       +   is the effect of 

past control moves 
       is the correction term 
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The most common assumption is that the correction 
term is constant in future 

 =  = . . .=  =  -                                    (12) 

Also, realize that there are no control moves beyond 
the control horizon of M steps, so 

= =...= =0                                       (13) 

 
In matrix – vector form, a prediction horizon of P steps 
and a control horizon of M steps yields 
 

In matrix – vector form, a prediction horizon of P steps 
and a control horizon of M steps yields 
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(14) 

Which we write using matrix notation  
ˆˆc

Y s u s u s u dpast past N Pf f
     

         (15) 
In the above equation, the corrected predicted output 
response is naturally composed of a ‘forced response’ 
(contributions of the current  and future control 
moves) and a ‘free response’ (the output changes that 
are predicted if there are no future control moves).the 
difference between the set point trajectory , r, and the 
future prediction is 

ˆˆ [ ]c

past P N P f fr Y r s u s u d s u       
       (16)

 

This can be written as  
                       c

f fE E s u                                             (17)
 

Where 

           cE is the future predicted error 
            E  is the free response 

             -
f fs u  is the forced response 

The least squares objective function is  
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Therefore the objective function can be written in the 
form 

 =    
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By Substituting equation 17, the constrain into 
objective function can be 
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The solution of the minimization of this objective 
function is 

u
f
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Notice that the current and future control moves 

vector( u
f

 ) is proportional to the unforced  

error vector( E ) . that is controller gain matrix, K 
multiplies the unforced error vector.  

fu =K E                                                                             (27) 

Where K =  
1

T Ts s w s
f f f


  

Because only the current control moves is actually 
implementing, we use the first row of the K matrix, and 
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fu =K1 E                                                                             (28) 

Where K1 represents the first row of the K matrix 
5.1. Steps involved in Implementing DMC on a 
process 

1. Develop a discrete step response model with 
length N, based on the sample time ∆t. 

2. Specify the prediction (P) and control (M) 
horizons. That is N≥P≥M 

3. Specify the weighting on the control action 
(w=0 if no weighting). 

4. All calculations assume deviations variable 
form, so remember to covert to/from 
physical units. 

5.2. DMC Tuning Strategy 
1. Approximate the process dynamics with a 
first  

Order plus dead time (FOPDT) model 

( )
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
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                                                                   (29) 

2. It is desirable but not necessary to select a value for 
the sampling interval, T. 
    if possible, select  T as the largest value that satisfies
   

0.1T p and 0.5T t
d

                                                          (30) 

3. Calculate the discrete dead time (rounded to the next 

integer):                              
1

t
dk
T

 
  
 
 

                                                                           

(31) 
 
4. Calculate the prediction horizon and the model 
horizon as the process settling time in samples 
(rounded to the next integer): 

5 p
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T
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5. Select the control horizon, M (integer, usually from 1 
to 6) and calculate the move suppression 

coefficient:
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2fK p                                                                                  (34) 

6. Implement DMC using the traditional step response 
matrix of the actual process and the following 
parameters computed in steps 1-5: 

Sample time, T 
Model horizon (process settling time in samples), 

N 

Prediction horizon (optimization horizon), P 
Control horizon (number of moves), M 

Move suppression coefficient,   
 
6. SIMULATION RESULTS 

In this section, the simulation results for 
Spherical tank model are presented to illustrate the 
performance of the DMC control algorithm. Spherical 
tank models for various operating points (Table 1) are 
considered for this simulation study. Here, simulations 
are analyzed in two cases. Firstly, a reference step 
signal (unit step) is applied to the 10% operating point 
of the spherical tank model with DMC control 
algorithm and the responses are recorded in Figure 3. 
Similarly, a same procedure is used for IMC PI and ZNPI 
for the comparative analysis in the same Figure 3.. 
Secondly, a load disturbance is applied to the DMC 
algorithm under the same operating point and 
responses are traced in Figure 6.  
Figure 3 and Figure 6 reflects how the model responses 
are affected when the three controllers are used. It is 
observed that, the DMC algorithm gives an excellent 
performance than the other two. The performance of 
the DMC and other controllers in terms of ISE, IAE are 
calculated and tabulated in Table 2 and 3.  

A similar procedure is executed for other two 
operating points (Table 1) and the responses are filed 
in Figures 4, 5, 7 and 8.The performance indices for 
these cases are also calculated and given in same tables 
2 and 3. 
From the Table 2 and 3, it is observed that DMC control 
algorithm provides minimum error values in the servo 
and regulatory cases than the others two.  
In order to validate the DMC control algorithm, a 
robustness test is analyzed in the spherical tank model. 
A 5 % change in process gain Kp and time constant τp is 
made for the 10% operating point and their results 
were given in Figure 9 and Figure 10. From the results, 
DMC algorithm dominated in all aspects. 
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Fig.-3:Comparison of servo responses for DMC, IMC 

PI  and ZN PI Controllers at 10% Operating 
Point 
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Fig.-4:Comparison of servo responses for DMC, IMC PI 
           and ZNPI Controllers at 50% Operating Point 
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Fig-5:.Comparison of servo responses for DMC, IMC PI 
               and ZNPI  Controllers at 66% Operating Point 
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Fig.-6:   Comparison of regulatory responses for DMC, 

IMC PI and ZNPI Controllers at 10% Operating 
Point  
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Fig.7:.Comparison of regulatory responses for DMC, IMC 
PI and ZNPI Controllers at 50% Operating Point  
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Fig.-8:.Comparison of regulatory responses for DMC, 

IMC PI and ZNPI Controllers at 66% Operating 
Point  
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Fig.-9:.Comparison of DMC, IMC PI and ZNPI Controllers 

with 5% Kp change at 66% Operating Point 
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Fig.-10:.Comparison of DMC, IMC PI and ZNPI Controllers 

with 5% τpchange at 10% Operating Point 
 

Table 2 Performance Indices of DMC, IMC PI and ZNPI 

Controllers for all the three Operating points- Servo 

Responses 

 ISE IAE 

10% 50% 66% 10% 50% 66% 

DMC 190.7 207.3 242.9 240.6 268.6 308.9 

IMCPI 191.5 208.8 244.1 253.3 277.8 319.3 

ZNPI 197.9 267.7 281.9 320 436.5 465.6 

 

Table 3 Performance Indices of DMC, IMC PI and ZNPI 

Controllers for all the three Operating points- 

Regulatory Responses 

 ISE IAE 

10% 50% 66% 10% 50% 66% 

DMC 45.71 51.79 59.51 115.2 133 151.7 

IMCPI 47.87 52.19 60.01 126.6 138.9 159.71 

ZNPI 49.47 66.91 70.46 160 218.2 232.8 

 

 

7. CONCLUSION 

 A Dynamic Matrix Controller (DMC) is applied in to 
a non linear spherical tank system. Simulation runs are 
carried out by considering the DMC algorithm, IMC PI 
and conventional ZN PI-mode in a closed loop. The 
results clearly indicate that the incorporation of DMC 
in the control loop in spherical tank system provides a 
superior tracking performance than the IMC PI and 
conventional PI mode. A robustness of the DMC is also 
analyzed. 
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