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Abstract - In this proposed system, a novel 

reconfigurable architecture for computing the 

Polynomial Matrix Multiplication (PMM) of polynomial 

matrices and/or polynomial vectors for application in 

Advanced Wireless Communication and an algorithm 

for computing the approximate polynomial matrix 

Eigen Value Decomposition (EVD) is introduced. The 

proposed algorithm exploits an extension of the fast 

convolution technique to multiple-input multiple-

output systems. The proposed architecture is the first 

one devoted to the hardware implementation of PMM. 

The architecture, which is scalable in terms of the order 

of the input polynomial matrices, has been designed 

using the Xilinx system generator tool for advanced 

wireless communication. The application to sensor 

array signal processing is highlighted, in terms of 

strong de-correlation. The results are presented to 

demonstrate the accuracy and capability of the 

architecture. The performance results prove that the 

proposed solution gives low execution times while 

limiting the number of required resources. The 

parameters of the architecture are proved to be the 

best outcomes, when compared to the conventional 

approach in terms of Area, Power and Speed. 
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1. INTRODUCTION 
 
Polynomial matrix techniques equivalent to the singular 
value decomposition and Eigen Value Decomposition 
(EVD) for scalar matrices have received growing interest 
in recent years. They have been successfully applied to 
broadband extensions of narrowband problems, which 
traditionally have been addressed by the EVD. 
Applications include broadband Sensor Array Signal 
Processing (SASP), biomedical engineering, Multiple-Input 
Multiple-Output (MIMO) communications and coding, and 
sub-band coding. The EVD of a para-Hermitian system, or 
Polynomial Matrix EVD (PEVD), yields a factorization of a 
para-Hermitian polynomial matrix into a product 
consisting of a diagonal polynomial matrix that is pre and 

post multiplied by Para Unitary (PU) polynomial matrices. 
A PU polynomial matrix preserves the total signal power 
at every frequency, and so can be viewed as a lossless 
(stable, all-pass) filter bank. McWhirter et al. propose an 
extension of the EVD to para-Hermitian polynomial 
matrices, called the second order Sequential Best Rotation 
(SBR2) algorithm. It was originally developed for the 
purpose of generating a Finite Impulse Response (FIR) PU 
matrix to diagonalize the paraHermitian polynomial 
matrix of signals received by a broadband sensor array. 

  
2. ARCHITECTURE FOR POLYNOMIAL MATRIX 
MULTIPLICATION   

The two fast MIMO convolution techniques described in 
this section are fundamental to the aim of applying 
hardware implemented PEVD algorithms, particularly 
SBR2P, to high-speed or real-time problems. 

 

Fig 1: (a) matrix-vector PMM and (b) matrix-matrix PMM. 

2.1 Parallel Algorithm for PMM 

Introduce an algorithm for multiplication of 
polynomial matrices using the fast MIMO convolution 
technique. The algorithm starts by taking the FFT of the 
input polynomial matrices (or vectors), and proceeds with 
the conventional matrix multiplication of FFT-transformed 
matrices (or vectors), as in Fig. 1(b) [or Fig. 1(a)]. The 
parallel matrix-multiplication architecture was used as a 
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part of the proposed scheme. The process terminates with 
the IFFT of the sequence of matrix products.  

2.2 FFT_IFFT Block:  

The inner structure of the FFT_IFFT block consists 
of two simultaneously operating FFT blocks, which can be 
configured in forward or inverse mode depending on the 
fwd_inv signal. The block also contains four multiplexers 
(as well as a number of other miscellaneous blocks) to 
select one input signal from the corresponding set of three 
data signals and direct it accordingly to the xn_re or xn_im 
ports of the FFT blocks, which are for inputting real and 
imaginary values, respectively. The FFT_IFFT block has 
two modes of operation.  

In mode 1, the FFT blocks perform the FFT on 
each polynomial element of multiplier and multiplicand 
matrices in parallel, respectively, in a row-by-row and 
column-by-column sequential processing manner. In 
effect, the transformation is along the third dimension of 
the polynomial matrix. Complex row vector sequences 
resulting from the FFT of each polynomial element row for 
the multiplier matrix are stored into the memory blocks 
where sequences for the polynomial elements are 
individually placed within the memory, whereas complex 
column vector sequences resulting from the 
transformation of each polynomial element column for the 
multiplicand matrix are stored. 

3. MATHEMATICAL MODEL 

3.1 Polynomial Matrix Multiplication 

            PMM for advanced wireless communication is 
discussed as a tool for use with PEVD algorithms in the 
context of broadband Sensor Array Signal Processing; this 
chapter concludes for and investigate its computational 
complexity.  

3.2 Eigen Value Decomposition 

            In the mathematical discipline of linear algebra, 
Eigen decomposition or sometimes spectral 
decomposition is the factorization of a matrix into a 
canonical form, whereby the matrix is represented in 
terms of its Eigen values and eigenvectors. 

3.3 Eigenvectors and Eigen Values in Matrix 

           A (non-zero) vector v of dimension N is an 
eigenvector of a square (N×N) matrix A if and only if it 
satisfies the linear equation 

   Av = λv                       
           Where λ is a scalar, termed the Eigen Value 
corresponding to v. That is, the eigenvectors are the 

vectors that the linear transformation A merely elongates 
or shrinks, and the amount that they elongate/shrink by is 
the Eigen Value. The above equation is called the Eigen 
Value equation or the Eigen Value problem.   
This yields an equation (5.1) for the Eigen Values 

P (λ):= det (A – λI) = 0.                                                                                     

           Consider p (λ) the characteristic polynomial, and the 
equation, called the characteristic equation, is an nth order 
polynomial equation in the unknown λ.  

 

Fig 2: Eigenvectors and Eigen Values of the covariance 
matrix                                                                                                                                                                                     

           This equation will have Nλ distinct solutions, where 1 
≤ Nλ ≤ N. The set of solutions, that is, the Eigen Values, is 
called the spectrum of A. 

Factor  p of is  

               P (λ) = (λ – λ1)n1 (λ – λ2)n
2 . . . (λ – λk)n

k = 0.                            

           The integer ni is termed the algebraic multiplicity of 
Eigen Value λi. The algebraic multiplicities sum to N: 

         Nni
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          For each Eigen Value, λi, we have a specific Eigen 
Value equation (5.1), 

  (A – λiI) v = 0.                                                                                       
           There will be 1 ≤ mi ≤ ni linearly independent 
solutions to each Eigen value equation. Usually computed 
in other ways, as a by product of the Eigen value 
computation. In power iteration, for example, the 
eigenvector is actually computed before the Eigen value.    
 
 
                                                                                                                                                                                                                                                     

https://en.wikipedia.org/wiki/If_and_only_if
https://en.wikipedia.org/wiki/Characteristic_polynomial
https://en.wikipedia.org/wiki/Spectrum_of_a_matrix
https://en.wikipedia.org/wiki/Factorization
https://en.wikipedia.org/wiki/Algebraic_multiplicity
https://en.wikipedia.org/wiki/Linearly_independent
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3.4 Eigen Decomposition Of A Matrix 

           Let A be a square (N×N) matrix with N linearly 
independent eigenvectors, qi (i = 1,. . . , N). Then A can be 
factorized as 

   A = QQ-1                                                                                          

           Where Q is the square (N×N) matrix whose ith 
column is the eigenvector of A and Λ is the diagonal 
matrix whose diagonal elements are the corresponding 

Eigen values, i.e., ii = λi. Note that only diagonalizable 
matrices can be factorized in this way.         

The mi solutions are the eigenvectors associated 
with the Eigen value λi. The simplest case is of course 
when mi = ni = 1. The total number of linearly independent 
eigenvectors, Nv, can be calculated by summing the 
geometric multiplicities. There will be 1 ≤ mi ≤ ni linearly 
independent solutions to each Eigen value equation. 

Nvmi
N
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
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            The eigenvectors can be indexed by Eigen values, i.e. 
using a double index, with vi,j being the jth eigenvector for 
the ith Eigen value. The eigenvectors can also be indexed 
using the simpler notation of a single index vk, with k = 1, 
2, ..., Nv. 
                                       

4. RESULT & DISCUSSION 

 Performance Analysis 

Area 

Logic 
utilization  

Used  Available  Utilization  

1.Number 
of bounded 
Ios  

81  400  20%  

2.Number 
of DSPs  

20  32  62%  

Speed 

Minimum period: 9.546ns 

Minimum input arrival time before clock:10.100ns 

Maximum output required time after clock: 7.999ns  

Maximum combinational path delay: 8.553ns   

Power 

                             Logics: 17.5 

                             Ios: 20.3 

                             DSPs: 62.5 

4.1 Simulation Result Of PMM Architecture 

 

Fig 3: simulation result of PMM architecture 

4.2 Device Utilization 

 

Fig 4: Area report for Proposed Methodology 

4.3 Speed Reduction 

 

Fig 5: speed report for Proposed Methodology 
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4.4 Low Power 

 

Fig 6: power reports for Proposed Methodology 

The design process, at various levels, is usually 
evolutionary in nature. Initial design is developed and 
tested against the requirements. When, the design has to 
be improved. If such improvement is either not possible or 
too costly, then the revision of requirements and its 
impacts analysis must be considered. VLSI design flow 
describes behavioural, logic-gate, circuit and lay-out 
representation. 

 
 
 
 

 

 
 

 

 

 

 

 

 

 

 

 

 

Fig 7: VLSI design Flow 

Explanation for VLSI Design Flow 

           The VLSI design flow consists of three major 
domains, namely: 

 Behavioural domain 
 Structural domain 

 Geometrical Layout domain. 
 

The design flow starts from the algorithm that the 
behaviour of the target chips. The corresponding 
architecture of the processor is first defined. It is mapped 
onto the chip surface by floor planning. The next design 
evolution in the behavioural domain defines Finite State 
Machines(FSMs), which are structurally implemented with 
functional modules such as registers and the Arithmetic 
Logic Units (ALUs).These modules are then geometrically 
placed onto the chip surface using CAD tools for automatic 
module placement followed by routing, with a goal of 
minimizing the interconnects area and signal delays. The 
third evolution starts with behavioural modules are then 
implemented with leaf cells. At this stage the chip is 
described in terms of logic gates (leaf cells) which can be 
placed and interconnected by using a cell placement and 
routing program. The last evolution involves a detailed 
Boolean description of leaf cells and mask generation. In 
standard-cell based design, leaf cells are already pre-
designed and stored in a library for logic design use. The 
use of hierarchy or “divide and conquer” technique 
involves dividing a module and then repeating this 
operation on the sub-modules until the complexity of the 
smaller parts becomes manageable. This approach is very 
similar to the software case where large programs are 
split into smaller and smaller sections until simple sub-
routines, with well defined functions and interfaces can be 
written. The design of VLSI chip can be represented in 
three domains. Correspondingly, a hierarchy structure can 
be described in each domain separately.  

 

3. CONCLUSIONS 
 
The proposed architecture, which is the first hardware 
solution to this type of problem, is based on the 
application of the fast convolution technique to MIMO 
systems, which exploits the FFT. A major contribution of 
this project is the introduction of a highly pipelined partly 
systolic architecture for hardware realization of fast MIMO 
convolution for PMM. This project has focused on the 
relevance of the proposed architecture to signal 
processing in the context of strong de-correlation. 
PMM is an essential stage in the separation of the 
broadband subspaces. It is also implicit in the efficient 
calculation and application of subspace projections, such 
as the generator and parity check polynomial matrices, for 
channel coding. In the predict that one can devise an 
effective and efficient algorithm, to enable the repetitive 
operation of the array on a different set of sub-matrices 
stripped from the input polynomial matrices in each 
iteration, allowing the architecture to perform PMM of any 
size matrices in a certain number of iterations. 
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