
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 02 | Feb-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 301

Concurrency Issues in Object-Oriented Modeling

Ms. Snehal Chaflekar

Professor, Dept. Of Information Technology, PBCOE, Nagpur, Maharashtra, India

---***---

Abstract - The work described in this paper is a rst
attempt to nd a synthesis of concurrency and the object
model. A representative sample of concurrent object-
oriented languages has been analyzed to identify issues
{dimensions{ peculiar to the conjunction of the two features
of interest. The presentation includes sections that review
and develop the basic concepts, both in concurrency and the
object model, needed for the analysis of the languages. The
relevant issues are presented in a structured way, along
with a discussion of pros and cons of the possible
alternatives. Issues identified include several concurrency
and encapsulation features and also communication,
migration and transparencies among others. Some
preliminary conclusions are ordered, as well as suggestions
for future work.

Key Words: Concurency, Co-routine, Encapsulation,
Object, Thread

1.INTRODUCTION

This work is an attempt to nd a synthesis of two important
elements in the design and construction of software, as
they are re ected in programming languages. We
investigate object-based programming languages that o er
concurrency (henceforth also called concurrent object-
oriented languages.)

1.1 Concurrency

The design and construction of software in which (loosely-
or tightly coupled) concurrency is involved has always
been a hard task. In the past, it was reserved to the
initiated who were responsible to build certain type of
software, such as operating systems and some real-time or
distributed applications.

The discipline evolved, and new tools and concepts were
added to ease the task of the concurrent programmer and
improve the quality of her work. Unfortunately, these
achievements have not kept pace with the increased
complexity and diversity of demands that are put on
concurrency. Driven mainly by the desire to take

advantage of decreasing costs of hardware, but also for
more stringent reliability (and other) constraints, the
constant need to tackle more complex problems, and
especially problems whose solution is expressed naturally
in concurrent terms (thus avoiding overspecification), the
discipline of building concurrent programs is now
spreading to areas and (uninitiated) people not expected a
few years ago. The quest for new design techniques, new
paradigms, etc., has increased correspondingly, but we are
still far from a panacea. object model Though the object-
oriented model has roots in simulation and artificial
intelligence, they remained relatively unknown until the
eighties, when it sprang to notoriety with the Smalltalk
phenomenon. The uniformity of the approach
(\everything is an object or a message between objects")
captured the interest of a community burdened by the
complexity of the problems it was tackling and the tools it
was using. To name just two of the expectations raised, it
was anticipated that programming would move closer to
design, and that reusability of software would be practical.
While initial results have not been miraculous, there are
signs that indicate that this is a (maybe `the') right
approach to building software.

Object-oriented methodologies are having a deep e ect in
the culture and practice of software building, and we
witness trends to introduce them in all kinds of
application domains, at least as a new engineering
paradigm, much in the fashion of `structured pro-
gramming' in the seventies.

1.2 concurrency + objects

It is not surprising, given the importance of both concerns,
that several groups of researchers trying to apply the
object-oriented methodology to the harnessing of
parallelism. This is done through attempts to extend the
object-oriented paradigm to include concurrency. Besides,
for reasons similar to those that fuel the use 3of
concurrency, there is a great demand for distributed
languages and systems, so the initiatives tend to include
both concurrency and distribution.

Foundations are considered first, and only then is
presented the core of the work, consisting of a set of
interesting features identified during our survey of the
languages. We analyzed the literature for each language to
nd out how (and if) the facilities as-sociated with
concurrency and object-oriented are provided.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 02 | Feb-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 302

2. CONCURRENCY

Concurrency corresponds to the everyday experience of
carrying out several tasks at the same time, something
typical of human activity , we note that humans can
simultaneously chew gum and walk in a straight line But
things are not so simple in the world of computer
programming. When studying programming, the
conventional approach is to avoid concurrency as long as
possible, trying instead to nd sequential algorithms to
solve the problems. This is attributed to the increased
complexity inherent in dealing with concurrent algorithms.
It is hard to `think concurrent,' to use a loose but evoking
expression. Not to mention the di culties associated with
specifying, deriving, and proving correct concurrent
programs (as compared with the same activities in the
case of sequential programs). However, there exist several
strong reasons to use concurrent algorithms. One is
economic: the more parallelism one has, the more
(computational) resources can be poured in to solve
(faster) a problem. Trends in the recent past show that,
with the declining costs of hardware, the primary e ciency
concern for a large family of applications is execution time
(correctness provided, of course: more on this below).
Since physical limits to computer peed are fast
approaching, it is clear that introduction of parallelism is
the only way left to speed things up.

The other reason is {conceptually{ more interesting: many
problems are inherently concurrent in their formulation.
The interest for concurrent solutions is obvious: they will
be the most natural ones! To understand why this does not
contradict what was said above about the complexity of
concurrent solutions the reader should realize the gap
between the `nature' of a problem and its formalization in
a way suitable for the derivation of a computing solution.
And here is where programming languages play their part:
they are {at some level{ the tools the problem solver uses
to express her understanding of the problem, or better, the
tools she 2 uses to express a suitable algorithm. It is not
within the scope of this paper to discuss the precise role of
programming languages in problem solving or even in the
formulation or description of algorithms. We nevertheless
believe they are important enough to justify their study.
Moreover, in dealing with object-oriented concurrent
languages, the eld is very far from closed. At this point, we
hope to have motivated the reader to carry on, ready to
endure the review of concepts related to concurrency. We
believe this section to be necessary because of the myriad
de nitions, semantics, etc., through which concurrency is
introduced in the literature. The following is not a
complete survey, but should su ce as a recapitulation and
to agree on some basic concepts and terms.

2.1 Fundamental Concepts

We do not start from the de nition of algorithm, program,
process (these issues well dealt with in e.g. Ancilotti 88])
but instead review some basic concepts. The
(computational) activity is the basic notion of (sequential)
execution: it may be conceived as abstracting the notion of
one processor executing one program (or as the dynamic
counterpart, shown in the trace, of the static speci cation
represented by the program.) We say that two activities A
and B are concurrent if they do not have a necessary
temporal ordering between themselves, i.e. A might occur
completely before B , the reverse could also happen, or
they could even overlap in time. (An intuitive notion of
time succes for our purposes.)

We have parallelism when concurrent activities overlap in
time we also say in that case that concurrency is being
exploited. Two concurrent activities communicate when
they are able to exchange information by some of the
means described below.

2.2 Language constructs and tools for
concurrency

Various constructs to express concurrency in
programming languages have been proposed.

2.2.1 co-routines

The first construct to handle concurrency at a language
level is the coroutine, introduced by Conway (1963). A
coroutine is like a procedure in that it has local
declarations and code. It di ers from a procedure in the
way control is handled, and in the fact that its state
persists across control transfers.

A procedure is invoked with a call statement and returns
control to the caller via a return statement. There exists a
hierarchical relation between caller and callee: the callee
does not know which unit called it, and cannot choose
where the control will ow to on its termination. A
coroutine, on the other hand, may suspend its execution
via a resume statement, transferring control to another
coroutine whose name is indicated as the parameter in the
resume call. Coroutines are therefore organized in the
same level whereas procedures are 6organized in a
hierarchy. When it is resumed later, the coroutine
continues execution from the point it did its last resume,
its state unaltered.

Notice that the coroutine concept allows the interleaving
but not the parallel execution of activities, i.e., no two
coroutines can be executing simultaneously. Considering
uniprocessor machines, however, they are very useful, for

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 02 | Feb-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 303

any concurrent program is executed by interleaving, so
coroutines are a good basis on which to build an
interleaved implementation of concurrency.

2.2 fork and join

The fork and join pair of constructs is also due to Conway.
The fork instruction produces two concurrent executions
within a program, namely the continuation of the invoker
and the spawning of a new one starting from some point in
the program (speci ed as a label in the argument), thus
splitting in two the control ow. Note the di erence with
coroutines: we now have two executions that are rather
independent, but are in fact executing (portions of) the
same code, and sharing the name space. The join is the
symmetric operation. When encountered by an activity, it
nishes its independent execution and disappears. Note
however that its parent activity (the one that fork ed it)
anyway `inherits' whatever data the dead activity might
have elaborated for these data is in the shared name space.
So an explicit passage of results is not needed. This is a
powerful primitive: it can be proved any form of
precedence in concurrent actions may be expressed as a
composition of forks and joins.

2.2.3 parbegin . . . parend

This parallel construct was introduced by Dijkstra. It is
analogous to an Algol block in its shape. But in this case
the statements enclosed in the brackets are all executed
concurrently. It is more structured than the fork and join,
but less powerful. There are precedence constraints for
concurrent programs which are not representable with
parbegin . . . parend that are representable with fork . . .
join (see example in Peterson 85]). But the power is
equated if the par- pair is augmented with suitable
synchronization primitives (e.g. semaphores).

2.2.4 processes

Processes are another way of structuring concurrency.
The idea is to allow several sequential programs to
execute concurrently, each having its own program
counter, name space, etc. Interaction among them may
take essentially two shapes: by message passing or by
sharing of variables Lauer 78]. Much is gained in this
schema, for encapsulation allows certain con icts (e.g.
interference on shared data) to be managed more easily.
Also, the design and programming are easier {at least in
principle{ because the smaller units are sequential:
concurrency only occurrs among full-sized processes (i.e.
processes the size of stand alone programs).

2.2.5 synchronization

There exist several ways of synchronizing activities: they
are roughly divided according to whether there is any
memory shared among the activities. In the case of shared
memory we have the semaphore due to Dijkstra, which is
a variable that may be accessed only through two special
operations, P and V . The semantics of the operation is
such that under certain conditions an activity executing a
P on a semaphore may be delayed. It will only allowed to
carry on when another activity executes a V on the same
semaphore. So its functioning reminds us of the system for
crossing a narrow (one-lane) bridge, in which the driver of
the last car of a group allowed to proceed is given some
token (e.g. a colored stick) on one end of the bridge, and
only when she reaches the other side is it possible to allow
the crossing in the other direction.

It is well known that semaphores are elemental and
powerful, but very unstructured {thus prone to error.
Another, more structured synchronizing primitive is the
monitor construct introduced by Hoare. It encapsulates
data so that it is manipulated only through exported
operations, and its semantics guarantees that there is at
most one active operation at a time, thus serializing access
and preventing interferences in the shared data. In the
case of no shared memory, synchronization is done via
synchronous message passing. Sending (or receiving) a
message is viewed as calling a special procedure, in which
the activity is stuck until the partner of the
synchronization does the symmetric operation. Then both
return normally, resuming their respective executions.

2.3 Threads

A controversial concept Consider a conventional operating
system process. It is a dynamic concept, in that it is the
executing counterpart of a static speci cation of behavior
given in its corresponding program. It is basically an
executing entity, with associated resources and data. It
comprises 8 several parts. It has a name space that
delimits the entities it owns, as well as permissions to
access and use resources in the system. It is protected by
boundaries from other processes.

It has an execution state (i.e., ready, suspended, etc.) It
may have an associated priority. But, again, it also has a
dynamic part, i.e., a thread of control, which leaves as a
trail the `trace' representing the path of execution. This
thread is like an abstraction of the processor, whereas all
the environment corresponds to the physical resources,
e.g. memory, peripherals, etc., the processor controls
(analogous to the `owning' of objects in the name space of
the process.)

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 02 | Feb-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 304

The other is its thread , the basic unit of cpu utilization , or
abstraction of the executing agent, which corresponds to
our intuitive concept of activity, outlined above. But
consider now having more than one thread in the same
environment: now we have concurrency `internal' to the
process, sharing the same name space. In our machine
analogy, it is as though we had a multiprocessor with a
shared central memory. We now have a notion of a
process which may have internal concurrency through the
existence of several threads of control sharing an address
space (multithreading). This of course requires adopting
precautions to prevent the interference typical of
unchecked concurrency, i.e., the problems derived of
sharing entities under parallelism. These ideas have been
introduced and studied exhaustively in the operating
systems literature. A process is de ned there as a set of
threads of control executing within a single virtual address
space.

3. OBJECTS

This section reviews the concept of object-orientedness in
the domain of programming languages. It rst introduces
the notion of object in an intuitive way, through an
informal discussion. Then a classi cation scheme is o ered,
aiming to identify interesting features of object-oriented
languages. Concurrent features are examined using
concepts from the preceding section.

3.1 What is an object?

In the real world, an object is \anything with a crisply de
ned boundary" Cox 86]. While this is certainly not enough
to work with the object concept, it re ects the important
things about objects in the computer science `world.' One
of the essential reasons why people want to use object
oriented methodologies is because they want to map
things they see in the real world into computer
representations. This approach is feasible not only in
simulation, where its usefulness is obvious, 4 but also in
many situations in which a problem, its solution, or both
can be thought of in terms of objects. An Object is
essentially an encapsulation which encloses some data

The behavior of data objects is expressed most naturally in
terms of operations that are meaningful for those objects.
This set includes operations to create objects, to obtain
information from them, and possibly to modify them. For
example, push and pop are among the meaningful
operations for stacks, while integers need the usual
arithmetic operations. Thus a data abstraction (or data
type) consists of a set of objects and a set of operations
characterizing the behavior of those objects.

3.2.1 Non-concurrent features

The analysis identi es six orthogonal dimensions of object-
oriented language design. Concurrency is dealt with in the
next subsubsection the rest are explained here. class
classes serve to classify objects in sets with uniform
behavior. They specify operations common to all instances
and serve as a template from which objects may be
created. inheritance class inheritance is a mechanism for
sharing operations de ned in a superclass by a number of
subclasses. Inheritance schemes di er in the way an
invoked operation of an object is matched to a defi nition.
It is an object whose state is accessible only through its
operations. Its state is generally represented by instance
variables. strong typing a language is strongly typed if type
compatibility of all expressions representing values can be
determined from the static program representation at
compile time.

3.2.2 Concurrent features

Before examining the possible forms of concurrency in
object-based languages, let us introduce the central entity
with which we will deal in the rest of the work, namely the
processes (which we will call active objects .) active
objects active objects have an object-like interface of
operations and one or more threads of control that may be
active or suspended. (Threads were de ned in the section
on concurrency.) There are two aspects in this classi
cation. One is how is the internal concurrency is provided
the other concerns ways of synchronizing the threads.

4] CONCURRENCY, DISTRIBUTION AND OBJECT

In this section we examine relevant issues in concurrent
distributed object oriented languages. We will use the
background laid out in the preceding sections to
understand the features presented here. We believe the
following features constitute what characterizes a
language of the class we are considering. We have based
our analysis in three main sources: a set of recent
languages that have been branded `concurrent object-
oriented' in the literature.

Before going into the enumeration and analysis of
important aspects of languages, it is important to stress
the limitations of the analysis: we use an informal method.
A central idea is the concept of consistence, but no claim
will be made that the proposed set of language features is
consistent. Moreover, this is not true of the set of all
proposed features some of them are mutually con ictive.
(In that case a tradeo is obtained using more speci c
criteria derived for example from the application domain.)
We are not be too concerned with this because we are not
trying to design a language, so we do not need to choose
which features to include in it, and at what price. Note that
claiming consistency of a set of features would entail
exhibiting a language which contains all of them.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 02 | Feb-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 305

We nevertheless believe the analysis to be very useful,
both to our present purposes of gaining a better
understanding of concurrent object oriented language and
in the quest for a formal treatment of them. We think that
a rst approximation to this problem should be informal
and somewhat experimental. While we do not claim to
have de ned a design space in a rigorous sense, we have
isolated su cient but maybe more than necessary concepts
to start trying an identi cation of `elemental' ideas. We
expect criticism to our `shopping list' of features. On the
other hand, the notion of design space has the drawback
that all dimensions are born equal, i.e., we are forced to
adopt a at hierarchy of essential features. While this is
desirable from a formal (and maybe aesthetic) point of
view, we think that it does not re ect our current
knowledge of the area. Only when we identify the very
basic concepts on top of Taking the languages and their
features as phenomena to observe and try to explain
should ultimately lead to building a useful model.

4.1 Three concurrency issues

One natural aspect to look at in these languages is that of
concurrency. We are interested in the way in which
concurrency is introduced (or o ered) in the language.
There are three aspects to concurrency here. The rst is
whether the semantics of the language prescribe an
interleaved execution (nevertheless called `concurrent') or
allow true concurrency. The second is peculiar to
concurrent object-oriented languages and is about the
relation of objects to concurrency: is concurrency o ered
between objects (i.e. by concurrent execution of di erent
objects), within objects (i.e. by allowing several threads
inside an object), or both? Finally, we have an issue that
also arises outside the object-oriented domain 8 but is
strongly coupled to the previous, namely the `grain' and
`weight' of concurrency o ered by the language.

4.1.1 Concurrency: `true' versus interleaving

It has already been pointed out that some constructs (e.g.
coroutines) allow (quasi) concurrency but not parallelism.
In particular some models of (active) objects can service
only one request at a time, i.e. can have at most one active
thread.]. These languages are nonetheless termed
concurrent because they allow interobject concurrency.
Quasi concurrency is useful because it reduces the time
that zero threads are executing Wegner 87] (when a
thread suspends itself to wait for an event, it allows
another thread to enter the object). Other languages, in
contrast, o er real parallelism. Note that this device
conceptually eliminates queues (although queueing does
happen whenever the number of requests exceed that of
available processors {but this is and implementation issue
and is taken care of by the runtime system). I.e., in an
`axiomatic' sense

4.1.2 Intra- and inter-object concurrency

Concurrency may be obtained in an object environment in
two di erent ways, namely: intra-object (or intranode) it is
when inside an object several threads are allowed to
execute concurrently (this may turn up to be quasi-
concurrent, like e.g. in ABCL/1) inter-object it is simply
due to the independence of di erent objects, which may be
ex- ecuting simultaneously. This case is simpler because
by the very nature of these objects (i.e. because they are
units of distribution) there is a very controlled interac-
tion among them because they do not share any space and
communicate through a well-de ned interface.

Some authors Power 88] argue that there is a third form of
concurrency, namely that obtained by creating an object.
We consider this to be a special case of internode
concurrency, because concurrency is increased by
independent and loosely coupled execution of new threads
in a di erent name space. Power's view does not a ect
essentially our subsequent discussion: the reader may
take either view and transform the statements suitably
and our discussion will retain its meaning.

4.2 Communication, synchronization

The types of communication mechanisms available to a
language of the kind we are considering are essentially
those usually associated with distributed systems. Though
message passing is used in conventional object-oriented
systems, it usually has the conventional procedure call
semantics. (It is worth noting that in object-oriented
languages message passing may be present without there
being any distribution.

5. CONCLUSIONS

The main conclusion is one that somehow prevents other
conclusions. It is the recognition that the area we are
trying to probe is very new and so still wide open and
uncharted. This view is shared by others (Moss 88], Hogg
88], Nierstrasz 88]). This is the reason for the lack of
uniformity in concepts and terminology. Another
conclusion is that it is essential to formulate unifying
models at least we should strive to agree on what are the
basic concepts that matter here. We believe our work is a
step in that direction as it helps identify important issues.
An intuition that was present at the beginning {and that
partially prompted this research{ emerges stronger after
the work: the marriage of the object model and
concurrency is very interesting in at least two counts. One,
the promises it holds in terms of easing the task of
designing and building concurrent systems. And the other
{last but not at all least{ is the challenge of making it
possible, conceiving and really building the abstract
models that allow a deeper understanding and the ulterior

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 02 | Feb-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 306

formalization of the features pointed out in this work. So,
the road to follow is clear: to devise a model that adds
concurrency to a more precise object model. In the short
term, the rst step is to isolate a set of elemental
mechanisms (in an axiomatic sense) able to embody both
the notions of concurrency and the object model.

REFERENCES
[1] Jacobsen, Ivar; Magnus Christerson; Patrik Jonsson; Gunnar
Overgaard (1992). Object Oriented Software Engineering. Addison-
Wesley ACM Press. pp. 15,199. ISBN 0-201-54435-0.

[2] Meyer, Bertrand (1988). Object-Oriented Software Construction.
Cambridge: Prentise Hall International Series in Computer Science. p. 23.
ISBN 0-13-629049-3.

[3] Kindler, E.; Krivy, I. (2011). "Object-Oriented Simulation of systems

with sophisticated control". International Journal of General Systems:

313–343.

[4] Lewis, John; Loftus, William (2008). Java Software Solutions
Foundations of Programming Design 6th ed. Pearson Education Inc.
ISBN 0-321-53205-8., section 1.6 "Object-Oriented Programming"

[5] Ben-Ari, Mordechai (2006). Principles of Concurrent and Distributed

Programming (2nd ed.). Addison-Wesley. ISBN 978-0-321-31283-9.

[6] Pierre America. "Pool-t: A parallel object-oriented language". In

Akinori Yonezawa and M. Tokoro, editors, Object-Oriented Concurrent

Programming, pages 199–220. MIT Press, 1987.

[7]James Rumbaugh, Michael Blaha, William Premerlani, Frederick Eddy,

William Lorensen, “Object-Oriented Modeling and Design”, Prentice-Hall

International.

https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-201-54435-0
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-13-629049-3
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/0-321-53205-8
https://en.wikipedia.org/wiki/International_Standard_Book_Number
https://en.wikipedia.org/wiki/Special:BookSources/978-0-321-31283-9

