
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 02 | Feb-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1622

A SURVEY ON BUG TRACKING SYSTEM FOR EFFECTIVE BUG CLEARANCE

M.Suresh1, M.Amarnath2, G.Baranikumar3, M.Jagadheeswaran4
1Assitant professor, Departement of Information Technology, mail4sureshuni@gmail.com.

2, 3, 4 B.TECH, 4th year student, Departement of Information Technology, Manakula Vinayagar Institute of
Technology,Pondicherry,India.

2amar.moorthy1994@gmail.com,3baranikum2r@gmail.com,4jagan.mohan239864@gmail.com.
---***---

Abstract: Bugs are important challenge for a software organization. Software organization spends over 45 percentages of
their resources in handling these bugs. Managing these bugs manually are difficult and error prone. So an automatic
approach of instance selection and feature selection method is combined to handle the bugs, then the bugs are distributed to
bug solving experts. An inevitable step in fixing the bugs is assigning a bug solving expert. The problem is majority of bugs are
assigned to experts who has less experience in that domain which can leave the bugs unsolved. So using term selection method
a bug solving expert is predicted automatically depending upon the type of bugs. A history of these cleared bugs is maintained
using historical data management system. This automatically resolves a bug which is reported and solved in prior. This highly
reduces the time and cost involved in the bug clearance.

Keywords: Bug data reduction, Instance selection, feature selection, Historical data management system.

1. INTRODUCTION

 Bug is important challenge for any software
organization. Most of the software companies need to
deal with large number of software bugs every day.
Software bugs are unavoidable and fixing software bugs
is an expensive task [2]. In fact Software organization
spends most of their resources in handling these bugs.
For managing software bugs, bug repository plays an
important role. In software development and
Maintenance, a bug repository is a significant software
repository for storing the bugs submitted by users. Most
of the software which is open source projects has an
open bug repository which allows developers as well as
users to submit issues or defects in the software that
suggest possible solutions and remark on existing bug
reports. The drawback is that large-scale software
projects are so much large that makes the triaging
process very difficult. The inefficient data and unclear
data add redundancy data to the data repository and
create a great challenge to the software experts [1]. In
bug repository, each software bug has a bug report. The
bug report consists of textual information regarding the
bug and updates related to status of bug fixing [2].
 A bug repository gives a data stage support about
types of tasks on bugs, e.g., fault prediction, bug
localization, and reopened bug analysis. Large software
projects convey bug repositories (also called bug
tracking systems) support information collection and to
assist developers to handle bugs [3].
 The number of regular occurring bugs for open
source large-scale software projects is so much large
that makes the triaging process very difficult and
challenging[1]. Once a bug report is formed, a human

triager assigns this bug to a developer, who will try to fix
this bug. This developer is recorded in an item assigned-
to.The process of assigning a correct developer for fixing
the bug is called bug triage. Bug triage is one of the most
time consuming step in handling of bugs in software
projects. Manual bug triage by a human triage is time
consuming and error-prone since the number of daily
bugs is large and lack of knowledge in developers about
all bugs. Because of all these things, bug triage results in
expensive time loss, high cost and low accuracy [2].
 Before verifying and modifying a bug, each bug report
must be assigned to a relevant developer who could fix
it. In traditional bug repositories, all the bugs are
manually triaged by some specialized developers.
Aiming to reduce the human labor costs, some
supervised text classification approaches have been
proposed for automatic bug triage. After that the nature
of the bugs is predicted using a predictive algorithm and
then predict relevant developers for the incoming bug
reports with these classifiers.
 A bug repository gives a data stage support about
types of tasks on bugs, e.g., fault prediction, bug
localization, and reopened bug analysis. Large software
projects convey bug repositories (also called bug
tracking systems) support information collection and to
assist developers to handle bugs [3].
 The number of regular occurring bugs for open
source large-scale software projects is so much large
that makes the triaging process very difficult and
challenging[1]. Once a bug report is formed, a human
triager assigns this bug to a developer, who will try to fix
this bug. This developer is recorded in an item assigned-
to.The process of assigning a correct developer for fixing
the bug is called bug triage. Bug triage is one of the most

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 02 | Feb-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1623

time consuming step in handling of bugs in software
projects. Manual bug triage by a human triage is time
consuming and error-prone since the number of daily
bugs is large and lack of knowledge in developers about
all bugs. Because of all these things, bug triage results in
expensive time loss, high cost and low accuracy [2].
Before verifying and modifying a bug, each bug report
must be assigned to a relevant developer who could fix
it. In traditional bug repositories, all the bugs are
manually triaged by some specialized developers.
Aiming to reduce the human labor costs, some
supervised text classification approaches have been
proposed for automatic bug triage. After that the nature
of the bugs is predicted using a predictive algorithm and
then predict relevant developers for the incoming bug
reports with these classifiers.

2. TECHNIQUES USED

2.1 Top-K pruning algorithm

 Top-K ranking query in uncertain databases aims to
find a top K tuples according to a ranking function. The
interplay between score and uncertainty makes top-K
ranking in uncertain databases an intriguing issue,
leading to rich query semantics. Recently, a unified
ranking framework based on parameterized ranking
functions (PRFs) is formulated, which generalizes many
previously proposed ranking semantics. Under the PRFs
based ranking framework, efficient pruning approach for
Top-K ranking on dataset with tuple uncertainty has
been studied. However, this cannot be applied to top-K
ranking on dataset with value uncertainty (described
through attribute-level uncertain data model), which are
often natural and useful in analyzing uncertain data in
many applications.

2.2 Instance selection and feature selection

 Instance selection and feature selection algorithm
deals with clustering the similar bug data sets. . Feature
and Instance Selection belong to the practice of data
preparation (or pre-processing), which is a preliminary
process that transforms raw data into a format that is
convenient to the data mining (or machine learning)
algorithm. Usually, data is stored in a table-like format:
the columns of these tables are the attributes or features
- they describe the data - and the rows, or lines, are the
records or instances - they are the examples of the
concept stored in the data. Feature and Instance
selection processes allow applications, such as
classification or clusterization, to focus only on the
important (or relevant) attributes and records to the
specific concept that is in study. By removing noise,
irrelevant and redundant features and instances, and
reducing the overall dimensionality of a dataset, feature

and instance selection have been demonstrated to
improve the performance of most machine learning
algorithms, speed up the output of models and allow
algorithms to deal with datasets whose sizes are
gigantic.
 Feature selection algorithms perform very differently
in identifying and removing irrelevant, redundant and
randomly class-correlated features. Most of the works on
instance selection have been based on Nearest Neighbor
classification which finds a subset such that every
member of the original dataset is closer to a member of
the subset of the same class than to a member of the
subset of a different class.

2.3 Apollo’s algorithms

 Apollo generates test inputs for a web application,
monitors the application for crashes, and validates that
the output conforms to user. Apollo algorithm, a new
sensor information processing tool for uncovering likely
facts in noisy participatory sensing data. Apollo belongs
to a category of tools called fact-finders. It is the first
fact-finder designed and implemented specifically for
participatory sensing. When data tuples are clustered
and ranked by Apollo, the quality of reported
observations increases considerably. Apollo algorithm
illustrates a fact-finding tool designed to uncover most
likely truth in noisy participatory sensing data. Filtering
the amount of data for correctness is an important
challenge, commonly known in machine learning and
knowledge discovery literature as fact-finding. Apollo is
the first fact-finder designed specifically for
participatory sensing data. The algorithm has the
following reconfigurable parts: The parser: It uses a
configuration file (that describes the format of the input
data stream) to convert input data into a standard JSON
format. Conceptually, the data stream is composed of
source, observation tuples, where source identifies the
data source (e.g., the Twitter user ID), and the
observation content may be structured, as in the case of
phones sharing sensor values, or unstructured, as in the
case of people sharing text. The configuration file
describes the observation format. The distance metrics:
A library of different distance metrics is provided for
clustering of observations. For unstructured text, these
metrics reflect text similarity. For structured data,
metrics compute differences in data vectors. Data can be
multidimensional. For example, when cell-phones report
sensor values at given locations, both measurements and
locations can be elements of the data vector.

2.4 Naïve bayes classifier

 The approach iteratively labels numerous unlabeled
bug reports and trains a new classifier with labels of all
the bug reports. A weighted recommendation list is

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 02 | Feb-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1624

maintained to boost the performance by imposing the
weights of multiple developers in training the classifier.
Naive bayes classifiers are a family of
simple probabilistic classifiers based on applying bayes
theorem with strong (naive) independence assumptions
between the features. It is not a single algorithm for
training such classifiers, but a family of algorithms based
on a common principle: all naive bayes classifiers
assume that the value of a particular feature
is independent of the value of any other feature, given
the class variable. For example, a fruit may be considered
to be an apple if it is red, round, and about 10 cm in
diameter. A naive bayes classifier considers each of these
features to contribute independently to the probability
that this fruit is an apple, regardless of any
possible correlations between the color, roundness and
diameter features.

2.5 Markov chains method

 A Markov chain is a random process that undergoes
transitions from one state to another on a state space. It
must possess a property that is usually characterized
as "memorylessness": the probability distribution of the
next state depends only on the current state and not on
the sequence of events that preceded it. This specific
kind of "memorylessness" is called the Markov property.
Markov chains have many applications as statistical
models of real-world processes. It reveals developer
networks which can be used to discover team structures
and to find suitable experts for a new task.

2.6 Content-based recommendation (cbr) and
content based filtering (cbf)

 It recommends only the types of bugs that each
developer has solved before. In a content-based
recommender system, keywords or attributes are used
to describe items. To provide content-based
recommendation we treat the prediction task as a text-
categorization problem. Content based filtering
combines cbr with a collaborative filtering recommender
(cf), it identify potential experts by identifying similar
bug reports and analyzing the associated change sets.

2.7 Defect prediction method

 Defect prediction is a software task in software
metrics, which is to predict whether a software artifact
(e.g., A source code file, a class, or a module) contains a
defect or not First, a data set of software modules is
collected; second, each module is labeled (i.e., Whether a
module contains defects) and the attributes of this
module are extracted as metrics; third, a classifier (e.g., A
decision tree) is trained as a predictive model; fourth,

the trained classifier is used to predict whether a new
module contains defects.

3. LITERATURE REVIEW

3.1 Towards Effective Troubleshooting with
Data Truncation

 Towards Effective Troubleshooting with Data
Truncation deals with reducing the data present in the
bug repository and improve the quality of data then
reduce time and cost of bug triaging, it represent an
automatic approach to predict a developer with relevant
experience to solve the new coming report.. The bug data
sets are obtained and techniques such as instance
selection feature selection are applied simultaneously.
The top k pruning is applied for improving results of
data reduction quality, obtaining domain wise bug
solution. Instance selection is for obtaining a subset of
relevant instances (i.e., bug reports in bug data) .It is
used to Remove noise and redundant instances,Remove
non-representative instances.
Feature selection which aims to obtain a subset of
relevant features (i.e., words in bug data) ,Sorting of
words according to feature values .Top-K pruning
algorithm for improving results of data reduction
quality.

3.2 Technique to Combine Feature Selection
with Instance Selection for Effective Bug triage

 A Technique to Combine Feature Selection with
Instance Selection for Effective Bug Triage .It addresses
the issue of data reduction for bug triage by text
classification techniques. Conventional software
analysis is not totally suitable for the large-scale and
complex data in software repositories. Data mining has
developed as a promising means to handle software
data. There are two difficulties related to bug data that
may influence the effective use of bug repositories in
software development tasks, namely the huge scale and
the low quality. Therefore unfixed bugs are deleted from
the bug repositories.

3.3 Automatic Bug Triage using Semi-
Supervised Text Classification

 Automatic Bug Triage using Semi-Supervised Text
Classification propose a semi-supervised text
classification approach for bug triage to avoid the
deficiency of labeled bug reports in existing supervised
approaches. This approach combines naive bayes
classifier and expectation maximization to take
advantage of both labeled and unlabeled bug reports.
This approach trains a classifier with a fraction of

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 02 | Feb-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1625

labeled bug reports. Then the approach iteratively labels
numerous unlabeled bug reports and trains a new
classifier with labels of all the bug reports. Then it
employs a weighted recommendation list to boost the
performance by imposing the weights of multiple
developers in training the classifier. Before training a
supervised classifier for bug triage, a necessary step is to
collect numerous labeled bug reports, which are bug
reports marked with their relevant developers.The semi-
supervised text classification approach to improve the
classification accuracy of bug triage. This semi-
supervised approach enhances a NB classifier by
applying expectation-maximization (EM) based on the
combination of unlabeled and labeled bug reports. First,
this semi-supervised approach trains a classifier with
labeled bug reports. Then, the approach iteratively labels
the unlabeled bug reports and trains a new classifier
with labels of all the bug reports. To adjust bug triage,
we update a semi-supervised approach with a weighted
recommendation list (WRL) to augment the effectiveness
of unlabeled bug reports. This WRL is employed to
probabilistically label an unlabeled bug report with
multiple relevant developers instead of a single relevant
developer.

3.4 Reducing Features to Improve Bug
Prediction

 Recently, machine learning classifiers have emerged
as a way to predict the existence of a bug in a change
made to a source code file. The classifier is first trained
on software history data, and then used to predict bugs.
Two drawbacks of existing classifier-based bug
prediction are potentially insufficient accuracy for
practical use, and use of a large number of features.
These large numbers of features adversely impact
scalability and accuracy of the approach. Reducing
Features to Improve Bug Prediction aims in classifier to
first trained on software history data, and then used to
predict bugs. The disadvantage of the traditional method
is that, classifier-based bug predictions are potentially
insufficient accuracy for practical use, and use of a large
number of features. The system uses Naive Bayes and
Support Vector Machine (SVM).The system mainly Gain
Ratio for feature selection, along with the
characterization of bug prediction results achieved when
using feature selection. This paper proposes a feature
selection technique applicable to classification-based
bug prediction. This technique is applied to predict bugs
in software changes, and performance of Naıve Bayes
and Support Vector Machine classifiers is characterized. .
These features include everything separated by
whitespace, in the code added or deleted in a change.
This leads to a large number of features, in the
thousands, and low tens of thousands. For larger project
histories which span thousand revisions or more, this
can stretch into hundreds of thousands of features. The

addition of many non-useful features reduces a
classifier’s accuracy. Additionally, the time required to
perform classification increases with the number of
features, rising to several seconds per classification for
tens of thousands of features, and minutes for large
project histories. A standardapproach (in the machine
learning literature) for handling large feature sets is to
perform a feature selection process to identify that
subset of features providing the best classification
results. This paper introduces a feature selection process
that discards features with lowest gain ratio until
optimal classification performance is reached for a given
performance measure.

3.5 Efficient Bug Triaging Using Text Mining

 Efficient Bug Triaging Using Text Mining aims for an
automatic approach to predict a developer with relevant
experience to solve the new coming report. The
techniques used are five term selection method. Term
selection methods are used to reduce the high
dimensionality of term space by selecting the most
discriminating terms for the classification task. The
methods give a weight for each term in which terms with
higher weights are assumed to contribute more for the
classification task than terms with lower weights. The
goal of bug triaging is to assign potentially experienced
developers to new-coming bug reports. To reduce time
and cost of bug triaging, we present an automatic
approach to predict a developer with relevant
experience to solve the new coming report. It investigate
the use of five term selection methods on the accuracy of
bug assignment. In addition, it re-balance the load
between developers based on their experience. It
conduct experiments on four real datasets. To reduce the
time spent triaging, it present an approach for automatic
triaging by recommending one experienced developer
for each new bug report. This information can help to
manage the progress of these projects. In the last decade,
practitioners have analyzed and mined these software
repositories to support software development and
evolution. One of the important software repositories is
the bug tracking system (BTS). Many open source
software projects have an open bug repository that
allows both developers and users to submit defects or
issues in the software, suggest possible enhancements,
and comment on existing bug reports. It formulate the
bug triaging process as a classification task where
instances represent bug reports, features represent the
terms of the report, and the class label represents the
developer who fixed this report. This approach can help
the triage process in two ways: 1) it may allow a triager
to process a bug more quickly, and 2) it may allow a
triager with less knowledge about systems and
developers to perform bug assignments more accurately.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 02 | Feb-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1626

Sl.
no

Title Year Tools
Application
Area

Pros Cons
Analysis

1

Towards

Effective

Troubleshooting

With

Data Truncation

2015

Instance

selection

and

feature

selection

Bug

Repository

Handling.

The problem of

handling huge

number of data

in bug

repository is

minimized.

Instance

selection and

feature selection

is not completely

enough to

handle the data

in bug

repository.

Additionally,

text

processing

and data

processing

algorithm

must be used

to handle the

data in bug

repository.

2

A Technique to

Combine

Feature

Selection with

Instance

Selection for

Effective Bug

Triage

2015

Instance

selection

and

feature

selection

For an efficient

bug triage.

It analysis data

by considering

the word

dimension and

bug dimension

which helps in

reducing

duplicate and

unnecessary

bugs.

The order of

applying

instance

selection and

feature selection

is not clearly

explained which

leads to

inefficient

system.

The order of

applying

instance

selection and

feature is

selection

must be

determined

by a

predictive

algorithm.

3

Automatic Bug

Triage using

Semi-

Supervised Text

Classification

2010

Naïve

bayes

classifier

Software bug

handling.

It labels the bug

data iteratively.

The weighted

list maintained,

helps to boost

the results

obtained.

It only focuses

on classifying

the bugs in bug

repository. The

major problem

in bug handling

is that huge

number of data

in bug

repository.

Techniques

such as IS

and FS must

be used to

reduce the

data in bug

repository.

Proper

predictive

algorithm

must be used

to classify

bugs.

4

Reducing

Features to

Improve Bug

Prediction

2009

Support

vector

machine

Software

development

committee.

Provides a

layout for

minimizing

techniques used

in bug data

reduction.

Minimizing the

techniques used

leads in less

accuracy.

Necessary

algorithm

such as IS

and FS must

be used.

5

A Survey Paper

on Efficient

2015

Instance

selection

feature

Automatic bug

triaging.

It uses text

classification

techniques to

Too many

repositories are

used to handle

A

comparator

can be used

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 02 | Feb-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1627

Approach of

Data Reduction

Techniques for

Bug Triaging

System

selection

and

historical

data sets

reduce the data

in bug

repository.

Then uses

predictive model

to predict a

developer based

on historical

data sets.

the bugs in bug

repository which

can be

minimized.

to compare

the new bug

report with

historical

data sets.

6

A survey on

bug-report

analysis

2015 Bugzilla

Explains

various

techniques in

bug handling

Research and

explain

background

details about

bug handling

which makes

bug handling an

efficient task.

The accuracy

obtains by this

techniques are

not more enough

in handling the

bugs.

Several more

techniques

such as

instance

selection and

feature

selection

must be used

to handle the

bugs.

7

Automatic bug

triage using text

cateogarization

Naïve

bayes

classifier

Large open

source

projects.

Have explained

naïve bayes

classifier for bug

triaging. And

investigated bug

data sets

efficiently for

bug handling.

There is a

chance of

assigning the

bugs to un-

suited

developers.

Therefore the

techniques used

are inefficient.

Developers

should be

involved in

bug triaging

for an

efficient bug

handling.

8

Bug report

network:

varieties

strategies and

impact in Fos

development

2004 -

Software

development

community.

It focuses on

developing a

model that

provides

enhanced

software

management

techniques to

handle bugs.

It just handles

the bugs from

single

community.

Tools must

be

introduced

to handle

BRN’s

complexity.

9

Coping with an

open bug

repository.

2004 Bugzilla

Development

of eclipse and

Firefox

projects.

Explained briefly

about various

challenges that

are faced in

handling bugs in

bug repository.

It does not

explained clearly

about how

overcoming

these challenges.

After

analyzing

the scenario

proper tools

must be

suggested

for bug

handling.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 02 | Feb-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1628

10
Defect tracking

system
2007

CDTS and

BTS

Development

of projects in

MNC’s.

CDTS helps in

keep tracking of

defect, flaws,

errors that can

happen in

development of

a product.

BTS provides a

list of developers

to solve the

reported bugs.

CDTS does not

provide a view

of

methodologies

to handle the

reported bugs.

The process is

time consuming

when CDTS is

combined with

BTS.

Alternate

approach

must be used

in handling

these defects

in the

products.

11.
Modeling bug

report quality
2007 Bugzilla

Used as filter

in Mozilla and

Firefox project

to resolve the

bug.

It will reduce

overall

maintenance

cost. Leads to

better

precession and

recall results.

The drawback is

that it will

consider only a

two projects.

The reported

should

provide

complete

guide about

the bug.

12.

Towards the

next generation

of bug tracking

system

2008
Card sort

technique

Software

development

project.

It will come out

with useful

recommendation

that improve the

working of BTS.

Though it

provides more

recommendation

it does not

provide any tool.

The feature

that can

implemented

to good

quality of

bug report in

BTS. The bug

report that

provides

complete

information

that reporter

gets an idea

on how to

file a bug

report.

13.

Duplicate bug

report

considered

harmful really??

2008 Infozilla

Software

maintenance

of large

projects.

That all

duplicate are not

always

considered to be

harmful

sometimes it

provides

additional

information’s.

The study was

based on the

survey results of

bug report from

eclipse project5.

BTS should

consist a tool

that scans

the entire

duplicate

bug and

extracts all

the

additional

information

that might

be help in

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 02 | Feb-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1629

 Table -1: Analysis of various bug tracking system

fixing the

bug.

14.
What makes a

good bug report
2008 cuezilla

Software

development

projects and

product

manufacturing.

It will mention

the crucial role

in resolving the

bug. Identifies

the why

developer takes

more time.

This will

consider the

response of

experienced

developers. It

involves the self

selection

principles.

To improve

the quality of

bug report is

that it should

be made

mandatory

for all

reporters to

provide all

relevant

information

required

15.

New feature for

duplicate bug

detection

2014 Weka

Large open

source

projects and

android

development

projects.

Undefined the

use of

automatically

grouping the

duplicate bug

report.

Study shows that

36% of bugs are

duplicate but in

experiments

only 1452 were

duplicate.

The

attributes

should be

further

explored so

that better

duplicate

detection

system could

be

developed.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 02 | Feb-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1630

4. Conclusion

 The amount of data available in the bug repository
plays an important role in bug handling.So as to reduce the
data in bug repository, the bug reduction techniques must
be implemented. The data in bug repository is majorly
reduced by neglecting the redundancy data in the bug
repository. Then the subset of the data in data repository
is obtained. In future we planned to develop a predictive
model which predicts a developer based on the type of
bugs obtained. Then an historical data management
system is maintained which keeps record of bugs which
are reported and resolved in prior. A comparator checks
with this historical data management system when a new
bug is reported, if it is found to be reported again the
historical data management system resolves it
automatically without assigning to an expert.

References

[1] B Jifeng Xuan, He Jiang, Yan Hu, Zhilei Ren, Weiqin

Zou, Zhongxuan Luo, and Xindong Wu,”
Towards Effective Bug Triage with Software Data
Reduction Techniques” ieee transactions on
knowledge and data engineering, vol. 27, no. 1,
january 2015.

[2] karishmaMusale, Gorakshanath Gagare, “Towards
Effective Troubleshooting With Data Truncation” ,
“International Journal of Advanced Research in
Computer and Communication EngineeringVol. 4,
Issue 11, November 2015”

[3] Ashwini Jadhava, Komal Jadhava, “A Survey on
Software Data Reduction Techniques for
Effective Bug Triaging”, “International Journal of
Computer Science and Information Technologies,
Vol. 6 (5) , 2015, 4611-4612”.

[4] JifengXuan, He Jiang, “Automatic Bug Triage using
Semi-Supervised Text Classification”, “Chinese
Academy of Sciences, Beijing, 100190 China”.

[5] Suvarnaa Kale, Ajay Kumar Gupta, “A Technique to
Combine Feature Selection with Instance Selection
for Effective Bug Triage”, “International Journal of
Science and Research (IJSR) ISSN (Online): 2319-
7064”.

[6] C. Sun, D. Lo, S. C. Khoo, and J. Jiang, “Towards more
accurate retrieval of duplicate bug reports,” in
Proc. 26th IEEE/ACM Int. Conf. Automated Softw.
Eng.,2012

[7] J. Anvik, L. Hiew, and G. C. Murphy, “Who should fix
this bug?,” Proc. Intl. Conf. Softwarre Engineering
(ICSE 06), ACM, 2006, pp. 361-370.

[8] N. Betten burg, R. Prem raj, T. Zimmermann, and S.
Kim, “Reducing Features to Improve Bug

Prediction,” Proc. IEEE Conf. Software
Maintenance (ICSM 08), IEEE Computer Society,
Sep. 2008, pp. 337-345.

[9] J. Anvik , “Automatic bug reporting assignment, ” in
Proc 28th International Conference on Software
Engineering. ACM, 2006, pp. 937–940.

[10] J. Anvik , and G. C. Murphy , “Reducing the effort of
bug report triage: Recommenders for
development-oriented decisions,” ACMTrans. Soft.
Eng. Methodol., vol. 20, no. 3, article 10, Aug. 2011.

[11] K. Baloga, L. Azzopardi, and M. de Rijke, “Formal
models for expert finding in enterprise corpora,”
in Proc. 29th Annu. Int. ACMSIGIR Conf. Res.
Develop. Inform. Retrieval, Aug. 2006, pp. 43–50.

[12] C. Aggarwaal and KP. Zhaao, “Towards graphical
models for textprocessing,” Knowl. Inform. Syst.,
vol. 36, no. 1, pp. 1–21, 2013.

[13] J. Anvik and G. C. Murphy , “Reducing the efforts of
bug report triage: Recommenders for
development-oriented decisions,” ACMTrans. Soft.
Eng. Methodol., vol. 20, no. 3, article 10, Aug. 2011.

 [14] S. Artzi, A. Kie_zunn, J. Dollby, F. Tip, D. Dig, A.
Paradkar, and M. D.Ernst, “Findingbugs in web
applications using dssynamic test generationand
explicit-state model checkin,” IEEE Softw., vol.
36,no. 4, pp. 474–494, Jul./Aug. 2010.

[15] D. Matter , A. Kuhan , and O. Nierstrasz , “Assigning
bug reports using a vocabulary-based expertise
model of developers,” in 6th IEEE International
Working Conference onMining Software
Repositories, 2009, pp. 131–140

[16] D. Cubranic and G. C. Murphy , “Automatic bugs
triaging usings text categorization,” in Proc
Sixteenth International Conference on Software
Engineering, Citeseer, 2004, pp. 92–97.

[17] Jifeng Xuan , Hee Jiang , “ Towards Effective Bug
Triage”, “IEEE transactions on journal
2013”,pp.251-269 .

