
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 02 | Feb-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1347

MITIGATION OF DISTRIBUTED DENIAL OF SERVICE ATTACKS BY USING

SOFTWARE PUZZLE

 Mrs. Suganya K, Mr. Britto Dennis J, Ms. Hamna Farhan P C

PG Scholar, Dept. of.CSE(with specialization in networks)., Dhanalakshmi Srinivasan Engineering College,

Professor, Dept. of Information Technology., Dhanalakshmi Srinivasan Engineering College,Tamilnadu,India

PG Scholar, Dept. of.CSE (with specialization in networks)., Dhanalakshmi Srinivasan Engineering College,

Tamilnadu,India

--**********--

Abstract - Denial of Service (DoS) attack and
Distributed Denial of Service (DDoS) attack on the
Internet aim to prevent legitimate clients from accessing a
service and are considered a serious threat to the
availability and reliability of the Internet services. Client
puzzle is a well-known countermeasure, which demands a
client to perform computationally expensive operations
before being granted services from a server. However, an
attacker can inflate its capability of DoS/DDoS attacks
with fast puzzle- solving software and/or built-in graphics
processing unit (GPU) hardware to significantly weaken
the effectiveness of client puzzles. A new puzzle scheme
called software puzzle is introduced to prevent DoS/DDoS
attackers from inflating their puzzle-solving capabilities.
Unlike the existing client puzzle schemes, which publish
their puzzle algorithms in advance, a puzzle algorithm in
the present software puzzle scheme is randomly generated
only after a client request is received at the server side and
the algorithm is generated. Software puzzle aims at an
attacker is unable to prepare an implementation to solve
the puzzle in advance and the attacker needs considerable
effort in translating a central processing unit puzzle
software to its functionally equivalent GPU version such
that the translation cannot be done in real time.

Key Words: DDoS, client puzzle, software puzzle,

 GPU programming.

1. INTRODUCTION

Internet based technologies have revolutionized the
banking industry as well as way people interact with
financial institution and one another financially. However,
it has raised new questions and dimensions for securing
data of the financial institutions as well as the end-users.
Denial of Service (DoS) attacks and Distributed DoS
(DDoS) attacks attempt to deplete an online service’s
resources such as network bandwidth, memory and
computation power by overwhelming the service with

bogus requests. For example, a malicious client sends a
large number of garbage requests to an HTTPS bank
server. As the server has to spend a lot of CPU time in
completing SSL handshakes, it may not have sufficient
resources left to handle service requests from its
customers, resulting in lost businesses and reputation [1].
DoS and DDoS are effective if attackers spend much less
resources than the victim server or are much more
powerful than normal users. In the example above, the
attacker spends negligible effort in producing a request,
but the server has to spend much more computational
effort in HTTPS handshake. In this case, conventional
cryptographic tools do not enhance the availability of the
services; in fact, they may degrade service quality due to
expensive cryptographic operations. A client puzzle can
significantly reduce the impact of DoS attack because it
enables a server to spend much less time in handling the
bulk of malicious requests.

Hash-reversal is an important client puzzle
scheme which increases a client cost by forcing the client
to crack a one-way hash instance. Technically, in the
puzzle generation step, given a public puzzle function P
derived from one-way functions such as SHA-1 or block
cipher AES, a server randomly chooses a puzzle challenge
x, and sends x to the client. In the puzzle-solving and
verification steps, the client returns a puzzle response (x,
y), and if the server confirms x = P(y), the client is able to
obtain the service from the server. In this hash-reversal
puzzle scheme, a client has to spend a certain amount of
time tc in solving the puzzle (i.e., finding the puzzle
solution y), and the server has to spend time ts in
generating the puzzle challenge x and verifying the puzzle
solution y. Since the server is able to choose the challenge
such that tc _ ts for normal users, i.e., γ _ 1, an attacker
cannot start DoS attack efficiently by solving many
puzzles. Alternatively, the attacker can merely reply to the

server with an arbitrary number ˜y so as to exhaust the

server’s time for verification. In this case, although γ < 1
such that defense effect of client puzzle is weakened, the

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 02 | Feb-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1348

server time ts is still much smaller than the service
preparation time (e.g., RSA decryption) or service time
(e.g., database process) as the returned answer will be
rejected at a high probability. Of course, optimizing the
puzzle verification mechanism is very important and
doing so will undoubtedly improve the server’s
performance.

However, an attacker can easily utilize the “free”
GPUs or integrated CPU-GPU to inflate his computational
capacity. This renders the existing client puzzle schemes
ineffective due to the significantly decreased
computational cost ratio. For example, an attacker may
amortize one puzzle-solving task to hundreds of GPU
cores if the client puzzle function is parallelizable or the
attacker may simultaneously send to the server many
requests and ask every GPU core to solve one received
puzzle challenge independently if the puzzle function is
non-parallelizable. As the present browsers such as
Microsoft Internet Explorer and Firefox do not explicitly
support client puzzle schemes, Kaiser and Feng [2]
developed a web-based client puzzle scheme which
focuses on transparency and backwards compatibility for
incremental deployment. The scheme dynamically
embeds client-specific challenges in webpages,
transparently delivers server challenges and client
responses. However, this scheme is vulnerable to DoS
attackers who can implement the puzzle function in real-
time. Technically, an attacker can rewrite the puzzle

function P(·) with a native language such as C/C++ such

that the cost of an attacker is much smaller than that the
server expects.3 Even worse, a GPU-inflated DoS attacker
can realize the fast software implementation on the
many-core GPU hardware and run the software in all the

GPU cores simultaneously such that it is easy to defeat
the web-based client puzzle scheme

Many researches focus on reduce the effect of
DoS/DDoS attacks and add a difficulty to solve the puzzle
by an attacker. Software puzzle is proposed to mitigate
the effects of DoS and DDoS attacks. Software puzzle aims
to deter an adversary from understanding or translating
the implementation of a random puzzle function. That is
to say, unlike a data puzzle challenge which includes a
challenge data only, a software puzzle challenge includes
dynamically generated software, which including a data
puzzle function as a component. Although a software
puzzle scheme does not publish the puzzle function in
advance, because an adversary knows the algorithm for
constructing software puzzles.

2. SYSTEM MODEL

In this section we consider the existing system design
and the proposed system.

2.1 Existing System

Client puzzle schemes which publish a puzzle function in
advance, the software puzzle scheme dynamically

generates the puzzle function P(·) in the form of a

software core C upon receiving a client’s request.
Specifically, by extending DCG technology which
produces machine instructions at runtime [10], the
proposed scheme randomly chooses a set of basic
functions, assembles them together into the puzzle core
C, constructs a software puzzle C0x with the puzzle core
C and a random challenge x. If the server aims to defeat
high-level attackers who are able to reverse-engineer
software.

Client puzzle schemes assume that the malicious client
solves the puzzle using legacy CPU resource only. This
assumption is not always true. Presently, the many-core
GPU (Graphic Processing Unit) component is almost a
standard configuration in modern desktop computers(e.g.,
ATI FirePro V3750 in Dell T3500), laptop computer (e.g.,
nVidia Quadro FX 880M in Lenovo Thinkpad W510), and
even smartphones (e.g., PowerVR SGX540 in Samsung
I9008 GalaxyTM S). Therefore, an attacker can easily
utilize the “free” GPUs or integrated CPU-GPU to inflate
his computational capacity [5]. This renders the existing
client puzzle schemes ineffective due to the significantly
decreased computational cost ratio γ . For example, an
attacker may amortize one puzzle-solving task to
hundreds of GPU cores if the client puzzle function is
parallelizable (e.g., the hash reversal puzzle), or the
attacker may simultaneously send to the server many
requests and ask every GPU core to solve one received
puzzle challenge independently if the puzzle function is
non-parallelizable (e.g. modular square root puzzle [7]
and Time-lock puzzle [8]). This parallelism strategy can
dramatically reduce the total puzzle-solving time, and
hence increase the attack efficiency. Green et al. [6]
examined various GPU-inflated DoS attacks, and showed
that attackers can use GPUs to inflate their ability to solve
typical reversal based puzzles by a factor of more than
600. Moreover, in order to defeat GPU-inflated DoS attack
to client puzzles, they proposed to track the individual
client behavior through client’s IP address [9].

Problems Identified:

 A client has to spend a certain amount of
time tc in solving the puzzle (i.e., finding the
puzzle solution y)

 The server has to spend time ts in
generating the puzzle challenge x and
verifying the puzzle solution y

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 02 | Feb-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1349

 The existing client puzzle schemes assume
that the malicious client solves the puzzle
using legacy CPU resource only

2.2 Proposed System

A new type of client puzzle, called software puzzle is
defend against GPU-inflated DoS and DDoS attacks. Unlike
the existing client puzzle schemes which publish a puzzle
function in advance, the software puzzle scheme
dynamically generates the puzzle function P(·) in the
form of a software core C upon receiving a client’s
request. The proposed scheme randomly chooses a set of
basic functions, assembles them together into the puzzle
core C, constructs a software puzzle C0x with the puzzle
core C and a random challenge x. If the server aims to
defeat high-level attackers who are able to reverse-
engineer software, it will obfuscate C0x into an enhanced
software puzzle. After receiving the software puzzle sent
from the server, a client tries to solve the software puzzle
on the host CPU, and replies to the server, as the
conventional client puzzle scheme does. However, a
malicious client may attempt to offload the puzzle-solving
task into its GPU. In this case, the malicious client has to
translate the CPU software puzzle into its functionally
equivalent GPU version because GPU and CPU have
totally different instruction sets for different application.

Benefits:

 Software puzzle prevent GPU from being used in

the puzzle-solving process based on different

instruction sets and real-time environments

 Easily deployed as the present client puzzle

schemes do.

 Random puzzle with random algorithm at each

time.

Fig 1: software puzzle generated with secret key and

nonce sn.

3. CODE BLOCK WAREHOUSE CONSTRUCTION

The code block warehouse W stores compiled
instruction blocks. The purpose to store compiled codes
rather than source codes is to save server’s time;
otherwise, the server has to take extra time to compile
source codes into compiled codes in the process of
software puzzle generation. The intuitive requirements
for each block are

In order to assemble the code blocks together
each block has well-defined input parameters and output
parameters such that the output from one block can be
used as the input of the following blocks.

The size of each code block is decided by the
security parameter κ. Given that the size of software
puzzle is constant, if the block size is smaller, there are
more blocks on average such that more puzzles can be
constructed.

3.1 CPU-Only Instruction Block

Unlike CPU, GPU is designed for the predictable graphic
processing such as matrix operations, not generic logic
processing. As branching operations (e.g., try-catch-
finally, goto) are inherently non-predictable and are non-
parallelable, executing them in GPU is slow such that the

major merit of GPU cannot be exploited by the attacker.

TABLE I
EXAMPLE CPU-ONLY INSTRUCTIONS

Instruction Difference exploited
Read local cookie GPU cannot directly read CPU

storage
Allocate large
memory

GPU has much smaller memory
than CPU

Try-catch GPU does not support except
handling

Goto (address) GPU does not support branch
Create new class GPU does not support dynamic

class

3.2 Data Puzzle Algorithm Block

Similar to the blocks in data puzzle, algorithm
blocks perform the mathematical operations only. For
example, in an AES round, ShiftRows code block outputs
a transformed message matrix (or state), which can be
used as input of any other operation such as MixColumn
code block without incurring parameter mismatch
errors.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 02 | Feb-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1350

4. SOFTWARE PUZZLE GENERATION

In order to construct a software puzzle, the
server has to execute three modules: puzzle core
generation, puzzle challenge generation, software puzzle
encrypting/obfuscating.

4.1 Puzzle core generation

From the code block warehouse, the server first chooses
n code blocks based on hash functions and a secret, e.g.,
the j th instruction block bi j, where i j = H1(y, j), and y =
H2(key, sn), with one-way functions H1(·) and H2(·), key
is the server’s secret, and sn is a nonce or timestamp. All
the chosen blocks are assembled into a puzzle core,
denoted as C(·) = (bi1 ; bi2 ; · · · ; bin).

4.2 Puzzle Challenge Generation

Given some auxiliary input messages such as IP
addresses, and in-line constants, the server calculates a
message m from public data such as their IP addresses,
port numbers and cookies, and produces a challenge
x = C(y,m), similar to encrypting plaintext m with key y to
produce cipher text x. As the attacker does not know the
puzzle core C(·) (or equivalently the puzzle function P(·))
in advance, it cannot exploit GPU to solve the puzzle C0x
in real time using the basic GPU-inflated DoS attack
addressed. Nonetheless, if the puzzle is merely
constructed as above, it is possible for an attacker to

generate the GPU kernel by mapping the CPU instructions

in C0x to the GPU instructions one by one, i.e., to

automatically translate the CPU software puzzle C0x into its

functionally equivalent GPU version.

4.3 Code Protection

Code obfuscation is able to thwart the above translation
threat to some extent. Though there are no generic
obfuscation techniques which can prevent a patient and
advanced hacker from understanding a program in
theory [3], results in [4] show that obfuscation does
increase the cost of reverse-engineering. Thus, although
code obfuscation may be not satisfactory in long-term
software defense against hacking, it is suitable for
fortifying software puzzles which demand a protection
period of several seconds only.

A software puzzle consists of instructs, and each
instruction has a form (opCode, [operands]), where
opCode indicates which operation (e.g., addition, shift,
jump) is, while the operands, varying with opCode, are
the parameters (e.g., target address of jump instruction)
to complete the operations. As a popular obfuscation
technology, code encryption technology treats software
code as data string and encrypts both operand and

opCode. Concretely, given the code C0x, the server
generates an encrypted puzzle C1x = E(y, C0x), where
E(·) is a cipher such as AES, and y is used as the
encryption key. In practice, there are many commercial
code obfuscation tools for C/C++ software such as
VMprotect (http://vmpsoft.com/) which can be used to
protect the software puzzle from hacking.

5. SECURITY ANALYSIS

Software puzzle aims to prevent GPU from being used in
the puzzle-solving process based on different instruction
sets and real-time environments between GPU and CPU.
Conversely, an adversary may attempt to deface the
software puzzle scheme by simulating the host on GPU,
cracking puzzle algorithm, re-producing GPU-version
puzzle, or abusing the access priority in puzzle-solving.

Employing Host Simulator on GPU: If an attacker is able
to run a CPU simulator over GPU environment, the
software puzzle can be executed on GPU directly.

5.1 Deobfuscating Software Code

Generally, dynamic translation can accelerate the
attacking speed, but it is not very helpful to the GPU-
inflated DoS attacker because

• Dynamic translation is usually a human-
machine interactive process. If human interference is
required, the DoS attack is very ineffective.

In order to carry on the dynamic translation, the attacker
needs a simulation environment for “debugging” the
software puzzle. In the translation process, the
decryption key ˜y has to be tested by brute force.
Because it is impossible to decide whether a tested key is
right based on the recovered opCode value; the attacker
has to run the puzzle _C0x for every key test to make the
decision.

 If the simulation environment is run on CPU
host, the host cannot generate the GPU kernel
until the solution is found. Therefore, this
translation time is longer than the time used to
directly solve software puzzle by CPU host. In
other words, the GPU is useless for accelerating
puzzle-solving in this case.

 If the simulator is run on GPU, the attacker has
to face the troubles stated in Subsection V-A
besides the trouble existing in the above CPU
simulation environment.

Once the translated code has one error, the attacker fails
to recover the software puzzle C0x to find the correct
response such that he cannot launch DoS attack.
Therefore, it is not easy for an attacker to develop a GPU

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 02 | Feb-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1351

kernel for solving the original software puzzle by
deobfuscating/analyzing software puzzle.

5.2 Abusing Access Priority

All the client puzzle schemes assume that there is no
secure channel between the client and the server until
puzzle verification completion. Otherwise, the client
puzzle scheme is redundant. Thus, an attacker can
intercept all the traffic between the client and the server,
and start man-in-the-middle attack, say, sending
malicious software puzzles to the client browser so as to
launch attacks to the clients. However, an access policy
should be defined so as to enable the software puzzle to
call some special class generation functions. Hence, the
attacker may have extra right to create new classes to
make troubles to the clients.

Luckily, this “flaw” does not really incur any new threat
to the client host. As any new class created from the
attacker has the same priority as the original one, i.e., the
same as normal class except class generation permission,
it cannot access any other extra resources in the host
platform. Nonetheless, this class generation permission
enables the attacker to deplete the memory resource of
the local host by creating infinite number of classes. But
this memory DoS attack to local host also exists in the
“legal” Applet which requests for a large amount of
memory. Hence, the adversary is unable to incur new
threat to the host by abusing the extra priority.

6. CONCLUSION

Software puzzle scheme is proposed for defeating GPU-
inflated DoS attack. It adopts software protection
technologies to ensure challenge data confidentiality and
code security for an appropriate time period. Hence, it
has different security requirement from the conventional
cipher which demands long-term confidentiality only,
and code protection which focuses on long-term
robustness against reverse-engineering only. Since the
software puzzle may be built upon a data puzzle, it can
be integrated with any existing server-side data puzzle
scheme, and easily deployed as the present client puzzle
schemes do.

REFERENCES

[1] Jun. 2009.J. Larimer. (Oct. 28, 2014). Pushdo SSL

DDoS Attacks. [Online] Available : http:// www

.iss.net/threats/pushdoSSLDDoS.html

[2] E. Kaiser and W.-C. Feng, “mod_kaPoW: Mitigating

DoS with transparent proof-of-work,” in Proc. ACM

CoNEXT Conf., 2007, p. 74.

[3] B. Barak et al., “On the (Im)possibility of

obfuscating programs,” in Advances in Cryptology

(Lecture Notes in Computer Science), vol. 2139.

Berlin, Germany: Springer-Verlag, 2001, pp. 1–18.

[4] H.-Y. Tsai, Y.-L. Huang, and D. Wagner, “A graph
approach to quantitative analysis of control-flow
obfuscating transformations,” IEEE Trans. Inf.
Forensics Security, vol. 4, no. 2, pp. 257–267

[5] R. Shankesi, O. Fatemieh, and C. A. Gunter,“Resource

inflation threats to denial of service

countermeasures,” Dept. Comput. Sci., UIUC,

Champaign, IL, USA, Tech. Rep., Oct. 2010. [Online]

Available:http://hdl.handle.net/2142/17372

[6] J. Green, J. Juen, O. Fatemieh, R. Shankesi, D. Jin, and

C. A. Gunter, “Reconstructing Hash Reversal based

Proof of Work Schemes,” in Proc. 4th USENIX

Workshop Large-Scale Exploits Emergent Threats,

2011.

[7] Y. I. Jerschow and M. Mauve, “Non-parallelizable

and non-interactive client puzzles from modular

square roots,” in Proc. Int. Conf. Availability,Rel.

Secur., Aug. 2011, pp. 135–142.

[8] R. L. Rivest, A. Shamir, and D. A. Wagner, “Time-

lock puzzles and timed-release crypto,” Dept.

Comput. Sci., Massachusetts Inst. Technol.,

Cambridge, MA, USA, Tech. Rep. MIT/LCS/TR-684,

Feb. 1996. [Online]. Available :http://citeseerx.ist.

psu.edu/viewdoc/summary?doi=10.1.1.110.5709

[9] W.-C. Feng and E. Kaiser, “The case for public

work,” in Proc. IEEE Global Internet Symp., May

2007, pp. 43–48.

[10] D. Keppel, S. J. Eggers, and R. R. Henry, “A case for

runtime code generation,” Dept. Comput. Sci. Eng.,

Univ. Washington, Seattle, WA, USA, Tech. Rep. CSE-

91-11-04, 1991.

[11] E. Kaiser and W.-C. Feng, “mod_kaPoW: Mitigating

DoS with transparent proof-of-work,” in Proc. ACM

CoNEXT Conf., 2007, p. 74.

[12] NVIDIA CUDA. (Apr. 4, 2012). NVIDIA CUDA C

Programming Guide,Version 4.2. [Online]. Available:

http://developer.download.nvidia.com/

[13] X. Wang and M. K. Reiter, “Mitigating bandwidth-

exhaustion attacks using congestion puzzles,” in

http://developer.download.nvidia.com/

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 02 | Feb-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1352

Proc. 11th ACM Conf. Comput. Commun. Secur., 2004,

pp. 257–267.

[14] M. Jakobsson and A. Juels, “Proofs of work and

bread pudding protocols,” in Proc. IFIP TC6/TC11

Joint Working Conf. Secure Inf. Netw., Commun.

Multimedia Secur., 1999, pp. 258–272.

[15] D. Kahn, The Codebreakers: The Story of Secret

Writing, 2nd ed.New York, NY, USA: Scribners,

1996, p. 235.

