
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 02 | Feb-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1336

Empirical Analysis of Radix Sort using Curve Fitting Technique in

Personal Computer

Arijit Chakraborty1, Sanchari Banerjee2, Avik Mitra3, Dipankar Das4

1,3,4Assistant Professor, Department of BCA(H), The Heritage Academy
Chowbaga, Anandapur, East Kolkata Township, Kolkata-700107, India

 2Student, Department of Information Technology, Heritage Institute of Technology
Chowbaga, Anandapur, East Kolkata Township, Kolkata-700107, India

---***---
Abstract - The proposed research article aims at analyzing
empirically a non comparative integer sorting algorithm such
as radix sort using known curve fitting technique(s) in a
domestic computing machine (laptop) through various known
curve fitting models using time performance as a metric. We
have used eleven best known models to observe the behavioral
pattern of radix sort on the fly and concluded that power
model is the candidate model for best fit.

Keywords: Curve fitting, Empirical Analysis, Power Model,

Radix Sort, Performance Analysis

1. INTRODUCTION

Sorting is an art of arranging items and almost all computing
machines can sort data items, many are available readily and
many are yet to be explored, it is a well known fact that no
key comparison based sorting algorithms can sort N no. of
keys lesser than O(NlogN) operations with some require
O(N2) operations in worst case. We did picked radix sort
amongst many due to a beautiful feature being N of keys can
be sorted in O(N) operations. History of Radix sort dates
back as far as 1887 credit goes to the work of Herman
Hollerith [16] in tabulating machines. This paper aims at
finding the most suitable curve that can be fitted on time
generated data in computing machines used in common
households on day to day basis, curve fitting technique gives
us a platform to analyze and visualize experimental data
which may give further insight on the behavioral pattern of
radix sort. There is and always will be a scope of data
refinement as we have not considered many effects of
hardware architecture that plays a pivotal role in generating
such data, we just want it to keep it simple. In this paper we
found that out of many models power model is an ideal
model to fit the time data in personal computer(s).

2. Related Work

Intermediate step of Radix sort [1] uses the value of a digit at
a given position to determine the position of the number in
intermediate array; this array, in its final iteration, becomes

the sorted array. The scanning of the digits can either start
from left to right or right to left. Left to right scanning during
radix sort is termed as Most Significant Digit (MSD) radix
sort, whereas, right to left scanning during radix sort is
termed as Least Significant Digit (LSD) radix sort. LSD radix
sorts [2] use queue to store the numbers where the position
in the queue is based on the present digit being scanned.
MSD radix sorts uses bins or buckets to store the numbers
where the bucket in which the number is to be stored is
determined by the digit presently being scanned; for
example, 412 and 032 in list should be stored in bucket
numbers 4 and 0 respectively; in the next iteration, sub-
buckets are allocated for each bucket and the allocation of
the number in the sub-bucket is determined by the digit in
the next scanned position; the procedure recursively
continues to get a set of sub-buckets in order each containing
a number, and hence the numbers gets sorted when
numbers are extracted in order of the sub-buckets if the
buckets. Since the scanning is a sequential process, it slows
down the actual running time, although the run-time order
remains O(kn), where k is the number of digits in a number
and n is the size of data to be sorted. Moreover, the
allocation of sub-buckets in each recursive stages of MSD
radix sorts can result exponential growth of the allocated
space. To reduce the actual running-time in radix sorts in
scanning of digits and allocation of space [3] proposed
parallel radix sort where buckets are allocated at each
processor of a multi-core processing system, the numbers
are then moved between the buckets in subsequent
iterations. Though the parallel version of the radix sort
reduces the run-time, it suffers from time lag in exchange of
the numbers between the buckets. Moreover, if the buckets
contents vary, there will be further waste of CPU cycles to
deal with asymmetric inter-processor transfer of numbers,
called load imbalance. To reduce the load imbalance, load
balanced parallel radix sort [4] proposed to split the buckets
into multiple processors so that the count of the numbers in
each processor remains equal to each other thus improving
the run-time significantly. Partitioned parallel radix sort [2]
is proposed where the communication overhead is reduced
by parallelizing the MSD radix sort. Non-recursive MSD radix
sort [5] reduces the space overhead in radix sort by using
two sets of identical buckets for each digit, and sorting the
numbers in each bucket using Quicksort [6], and then

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 02 | Feb-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1337

transferring the contents of each bucket to another in
alternative fashion. Since space overhead is reduced, the
communication overhead in transferring the numbers
between the buckets is also reduced, thus reducing the run-
time. The dependency of run-time of LSD radix sort in vector
multi-processor environment is analyzed in [7] where
empirical formulation results also revealed dependency on
the number of processors actually used in the sorting
process. Quicksort to sort numbers in MSD radix sort in each
buckets is again employed in [8], called Matesort, thus
eliminating the need of allocation of sub-buckets. To reduce
the space overhead in LSD radix sort in GPUs, [9] proposed
to maintain a global count of the numbers for a set of
processors, so that the count can be used to determine to
position of a number in the final sorted array, resulting 20%
speed up of the algorithm.

All discussed implementations has used specialized
computing environment like CRAY [10] to report the run-
time. However, with the growth of computing needs, it is
expected the sorting is not the only computation to be
performed and any application employing sorting has to be
executed with the other algorithms. Therefore, it is intuitive
to use common computation environment like the personal
computing system for analyzing the run-time of radix sort. In
the next section, we analyze the actual run-time of the radix
sort algorithm in personal computing system.

3. OBJECTIVES OF THE STUDY

To identify the best curve that can be fitted to the
experimental data points (Run time versus Data size)
obtained by running Radix sort in the worst case in personal
computer and to propose a mathematical model of the best
fitted curve.

4. RESEARCH METHODOLOGY

The steps of the research methodology are given below:

Step 1: The Radix sort algorithm is implemented as a C
programme with data size varying from 10000 to 27000
with interval of 500. For each data size, the programme is
run 100 times and their average run-time is taken.

Step 2: We have used curve fitting technique to find the best
curve that can be fitted to the data points i.e. Run time versus
Data size. In the present study we have opted R square,
Adjusted R square and Root Mean Square Error (RMSE) as
the ‘Goodness of fit’ statistics [11][12][15]. The model which
has highest R square value, highest Adjusted R square value
and lowest RMSE has been selected as the candidate model
for the best curve for the dataset [11][12][15].

Step 3: The normality tests of the residuals of the candidate
model are carried out in this step. We have considered both
graphical methods (Histogram analysis of the residuals & Q-

Q plot analysis of the residuals) [11][12] and quantitative
method (Shapiro – Wilk test statistics of the residuals)
[13][14] for this purpose. We should observe a symmetric
bell shaped curve around the histogram, a linear pattern of
the points on the Q-Q plot and the significance of Shapiro –
Wilk statistics higher than .05 to meet the assumption of
normality of error distribution.

Software used: We have used GCC compiler of Dev-C++ 4.0
under Windows XP to generate the experimental data SPSS
have been used for data analysis.

Hardware used: Intel Core 2 Duo CPU T6570 with frequency
of 2.1 GHz with 3 GB RAM (having frequency of 1.19 GHz).

5. DATA ANALYSIS & FINDINGS

The Sample dataset is given in the following table:

Table -1: Data Table

Sl No. Data Size Run Time (milliseconds)

1 10000 1292.49
2 10500 1319.71

3 11000 1463.44

4 11500 1654.06
5 12000 1772.01

6 12500 1921.54

7 13000 2103.61
8 13500 2326.9

9 14000 2529.23

10 14500 2691.85
11 15000 2859.07

12 15500 3116.67

13 16000 3339.06
14 16500 3326.1

15 17000 3601.71

16 17500 3805.93
17 18000 4131.39

18 18500 4367.04

19 19000 3846.41
20 19500 3988.74

21 20000 4198.6

22 20500 4581.72
23 21000 4517.81

24 21500 5006.43

25 22000 5272.06
26 22500 5667.37

27 23000 6187.86

28 23500 6220
29 24000 6636.72

30 24500 6721.21

31 25000 6877.31
32 25500 7288.3

33 26000 7447.19

34 26500 7436.41
35 27000 7836.4

Identification of the best curve that can be fitted to the data
points:

The ‘Goodness of fit’ statistics of the Run time versus Data
size is given below:

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 02 | Feb-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1338

Table -2: Goodness of Fit Statistics Table

Model Name R Square Adjusted R Square RMSE

Linear .9797 .9791 288.6211
Logarithmic .9412 .9394 491.338

Inverse .8733 .8695 721.1321

Quadratic .9886 .9878 220.0855
Cubic .9886 .9878 220.0855

Compound .9661 .9651 .0999

Power .9897 .9894 .055
S .981 .9804 .0747

Growth .9661 .9651 .0999

Exponential .9661 .9651 .0999

Logistic .8051 .7992 .729

Findings: From the above table we found that out of eleven
(11) tried models, ten (10) models are having very high R
square and very high Adjusted R square. Out of these ten
(10) models, five (5) models are having low RMSE. We
observe that the Power model is having highest R square
value (.9897), highest Adjusted R square value (.9894) and
lowest RMSE value (.055). Therefore, we have selected the
Power model as the candidate model for the best curve for
this dataset.

The eleven (11) tried models are depicted in the following
figure:

Chart -1: Chart of Eleven Models

The normality test of the residuals of the candidate model is
given below:

(a) Histogram of the residuals –

Chart -2: Histogram of the residuals

Observations: From the above figure we have observed a
symmetric bell shaped curve around the histogram which is
approximately evenly distributed around zero.

(b) Q-Q plot of the residuals –

Chart -3: Q-Q plot of the residuals

Observations: From the above figure we have observed that
the points on the Q-Q plot are approximately linear.

(c) Shapiro – Wilk (SW) test statistics of the residuals –

Table -3: SW Test Statistics Table

Model
Shapiro-Wilk

Statistic df Sig.

Power .971 35 .463

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 02 | Feb-2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1339

Observations: From the above table we have observed that
the significance of SW statistics is .463 (higher than .05).

Findings of the normality test of the residuals of the
candidate model: From the above observations i.e. (a)
Histogram of the residuals, (b) Q-Q plot of the residuals and
(c) Shapiro – Wilk (SW) test statistics of the residuals, we
have found that the residuals are approximately normally
distributed.

The proposed mathematical model is given below:

Y = 7.274680973837771e-005 * X**1.813662220055146

Here,
Y = Run Time
X = Data Size

The plot of the above model is given below:

Chart -4: Final Concluded Model (Power Model)

6. CONCLUSION:

We have analyzed run-time behavior of Radix sort in its
average case. Where we found that power model (~
C*x**1.81) fits the data. Our analysis has considered
everyday computing scenario where executing the sorting
algorithm will not be the only task performed by a
computing device, that is, we have not taken into the factors
of cache misses, OS context switch etc. In future, we would
like to explore the effects of OS context switches on the
performance of Radix sort and shall try to propose an
empirical model that will give account of such events.

REFERENCES

[1] radix sort, National Institute of Standards and

Technology, [online],

https://xlinux.nist.gov/dads//HTML/radixsort.html

[2] S.J. Lee, M. Jeon, D. Kim, “Partitioned Parallel Radix Sort”,

vol 190, pp 160-171, LNCS High Performance

Computing, April, 2001.

[3] A. Maus, “A Full Parallel Radix Sorting Algorithm for

Multicore Processors”, NIK 2011.

[4] A. Sohn, Y. Kodama, “Load Balanced Parallel Radix Sort”,

pp 3015-312, Proceedings of the 12th International

Conference of Supercomputing, 1998.

[5] A.A.Aydin, G. Alaghband, “Sequential and Hybrid

Approach for non-recursive Most Significant Digit Radix

Sort”, International Conference on Applied Computing

2013.

[6] C.A.R.Hoare, “Quicksort”, vol. 5, issue 1, pp 10-16, The

Computer Journal, 1962.

[7] M. Zagha, G.E. Blelloch, “Radix Sort for Vector

Multiprocessors”, pp 712-721, Proceedings of the

ACM/IEEE conference of Supercomputing, 1991.

[8] N.A.Darwish, “Formulation and Analysis of in-place MSD

Radix sort Algorithms”, vol. 31, no. 6, pp 467-481,

December 2005.

[9] L. Ha, J. Kruger, C.T. Silva, “Fast Four-way Parallel Radix

Sorting on GPUs”, vol. 28, no. 8, pp 2368-2378,

December 2009.

[10] CRAY-1, COMPUTER SYSTEM, HARDWARE

REFERENCE MANNUAL, 2240004, [online], http://ed-

thelen.org/comp-hist/CRAY-1-HardRefMan/CRAY-1-

HRM.html

[11] D. Das, A. Chakraborty, A. Mitra, “Sample Based
Curve Fitting Computation on the Performance of
Quicksort in Personal Computer”, vol. 5, issue 2, pp 885-
891, February 2014.

[12] A. Chakraborty, A. Mitra, D. Das, “Empirical Analysis
of Merge sort in Personal Computer by Curve Fitting
Technique”, vol IV, issue IV, pp 1-6, April 2015.

[13] D. Das, P. Chakraborti, “Performance Measurement
and Management Model of Data Generation and Writing
Time in Personal Computer”, vol. 5, issue 6, pp 1218-
1226, June 2014.

[14] Testing for Normality using SPSS Statistics, Laerd
statistics, (n.d.). Retrieved May 17, 2014, from
ttps://statistics.laerd.com/spss-tutorials/testing-for-
normality-using-spss-statistics.php

[15] Evaluating Goodness of Fit – MATLAB & Simulink –
MathWorks India, MathWorks, [online],
http://www.mathworks.in/help/curvefit/evaluating-
goodness-of-fit.html

[16] The Art of Computer Programming by D. Knuth

