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Abstract - In the context of reliability, the stress-strength 
model describes the life of a component which has a random 
strength Y and is subjected to a random stress X. The 
component fails if the stress applied to it exceeds the strength, 
and the component will function satisfactorily whenever X <Y. 
Currently there is lot of interest in the area of stress-strength 
models, particularly in the estimation of the reliability              
R = Pr(X < Y), when X and Y are independent random variables 
belonging to the same univariate family of distributions. In 
this paper we study the stress-strength reliability R for type II 
compound Laplace distribution, which is obtained by 
compounding a Laplace distribution with the gamma 
distribution. Maximum likelihood estimation procedure is used 
to estimate the three parameters and reliability R. Finally, 
simulation studies were performed to validate the algorithm 
and also we discuss some of the applications of the model. 
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1.INTRODUCTION  

Stress-strength analysis is an area in reliability theory where 
we assess the impact of stress on strength of devices and 
systems. It is measured by the expression R = Pr(X < Y) 
giving the reliability of a component in terms of the 
probability that the random variable X representing stress 
experienced by the component less than Y that represents 
the strength of the component. The component fails when 
the stress applied to it exceeds the strength, and the 
component will function satisfactorily whenever X < Y. Thus, 
R = Pr(X < Y) is a measure of component reliability. The 
parameter R is referred to as the reliability parameter. This 
type of functional can be of practical importance in many 
applications. This measure of reliability is widely used in 
civil, mechanical, and aerospace engineering.  

It may be noted that R has more interest than just a 
reliability measure. It can be used as a general measure of 
difference between two populations such as treatment group 
and control group in bio-statistical contexts and clinical 
trials. For instance, if X is the response for a control group, 
and Y refers to a treatment group, Pr(X < Y) is a measure of 
the effect of the treatment. R = Pr(X < Y) can also be useful 

when estimating heritability of a genetic trait. For more 
applications of R, see [5], [14] and [1]. In fact, Bamber gives a 
geometrical interpretation of A(X; Y) = Pr(X < Y) + 2Pr(X = Y) 
and demonstrates that A(X; Y) is a useful measure of the size 
of the difference between two populations. 

 
1.1 Review of Literature 
 
      In most of the work in the evaluation of R = Pr(X < Y) it is 
assumed that both random variables has the same family 
and are independent. This problem has been extensively 
studied by various authors.  Weerahandi and Johnson( [16]) 
proposed inferential procedures for Pr(X > Y) assuming that 
strength X and stress Y are independent normal random 
variables. The application of skew normal distribution to 
stress-strength model is illustrated in [4].  Reliability studies 
of the Laplace distributions were discussed in [10]. Detailed 
description of stress-strength theory is given in [7]. Refer [8] 
for generalized exponential distribution, [9] for Weibull 
distribution, [12] for a scaled Burr Type X distribution, [13] 
for 3-parameter generalized exponential distribution, [3] for 
Marshall-Olkin extended Lomax distribution. In [2] stress-
strength reliability of the double Lomax distribution is 
studied and present its application to the IQ score data set 
from Roberts ([15]). 

Laplace distributions arise as tractable lifetime models in 
many areas, including life testing and telecommunications. 
Type I and type II compound Laplace distributions were 
introduced in [6]. The present study deals with the reliability 
R of the type II compound Laplace density.  

 

2. TYPE II COMPOUND LAPLACE DISTRIBUTION  
 

The Laplace random variable can be regarded as the 
difference of two i.i.d. exponential random variables. The 
(symmetric) type II compound Laplace distribution (CL) 
introduced in [6], results from compounding a Laplace 
distribution with a gamma distribution. Now we derive the 
probability density function of type II compound Laplace 
from the classical Laplace (double exponential) distribution. 
Let X follows a classical Laplace distribution given s with 
density given by  
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and let s follow a Gamma( ) distribution with density 

   

Then the unconditional distribution of X is the type II 
compound Laplace distribution with parameters ( ), 

denoted by X CL( ) and the density function is given 

by 

 

The parameters ( ) are the location, shape and scale 

parameters, respectively. The cumulative density function 
(cdf), is given by 

 

The density plot of Type II compound Laplace distribution 

for various values of  is shown in fig. 2.1. 

                                                                         
Figure 2.1.  Type II compound Laplace density functions 
for θ = 0 and various values of α and β.  

 
The survival function (sf) of the type II compound Laplace 

distribution is given by  

 

The qth quantile function (qf) of CL distribution is, 

 

The cdf and qf can be useful for goodness-of-fit and 

simulation purposes. For q = , the qth quantile is given by 

= . Hence, the estimate of the location parameter is 

given by  = , median. 

The moments of type II compound Laplace distribution is 

given by 

 

For r=1,  hence mean(X) =  Variance is 

obtained by putting r=2 and is given by 

Var(X) =   

Now we derive the stress-strength reliability R for the type II 

compound Laplace distribution. 

3. STRESS-STRENGTH RELIABILITY OF TYPE II    
COMPOUND LAPLACE DISTRIBUTION  

 
Let X and Y are two continuous and independent random 

variables. Let f1, F1, f2 and F2 denote the probability density 

function (pdf) and cumulative distribution functions (cdf) of 

X and Y respectively. Then the reliability R can be given as,  

    R = Pr(X < Y)  

                                                          

       =  

Now we evaluate the Pr(X < Y) for two independent type II 
compound Laplace (CL) distributions. Let X and Y are 
continuous and independent variables having CL 
distribution with parameters  i = 1, 2 
respectively. The pdf and cdf of CL is given in eq. (3) and    
eq. (4).  From eq. (8) we get the reliability R for the type II 
compound Laplace distribution as follows.  
 For  <   R can be expressed as 
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For  >   R can be expressed as 

 

Thus, the reliability parameter R can be expressed as  

  (9) 

where I(.) is the indicator function. The MLE of the R = P(X > 

Y) can be obtained by replacing the parameters 

in the expression of R in the eq. (9) by 

their MLE's. Using Maple program we can evaluate the 

integrals and compute the maximum likelihood estimator of 

R. 

3. ESTIMATION OF TYPE II   COMPOUND LAPLACE 
DISTRIBUTION  
 
In this section we study the problem of estimating three 

unknown parameters,  = ( ), of CL distribution. The 

estimate of  is median. The method of moments or 

maximum likelihood estimation method can be employed to 

estimate as described below. Let X = be 

independent and identically distributed samples from type II 

compound Laplace distribution with parameters . To 

estimate  under the method of moments, four first 

moments, E (Xr); r =1, 2, 3 are equated to the corresponding 

sample moments and the resulted system of equations are 

solved for the unknown parameters. These moments can be 

obtained from Eq. (7) but they exist only when  3. An 

alternative method is a maximum likelihood estimation 

where the likelihood function is maximized to estimate the 

unknown parameters and is describe below. 

The log-likelihood function of the data X takes the form, 

 

Here, 

 

Where,  = ; if  > , and = 0 otherwise, and 

 = - ( ); if   , and = 0 otherwise.  

The MLEs of ( ) for given  =   are obtained by 

solving the score equations for  and  . This leads to the 

following equations which are solved iteratively. 

 

 

The maximization of the likelihood can be implemented 

using the optim function of the R statistical software, 

applying the BFGS algorithm (see [11]). Estimates of the 

standard errors were obtained by inverting the numerically 

differentiated information matrix at the maximum likelihood 

estimates. 

4. SIMULATION 

 
In this section we use the simulation study of the CL 
distribution to validate the estimation algorithm developed 
in R. Since we can express the distribution function of the CL 
distribution as well as its inverse in closed form, the 
inversion method of simulation is straightforward to 
implement. We simulated a data set of size n from the CL 
distribution with parameters = (0.05, 1, 0.05) 

and = (1, 4, 0.05) by inverting the distribution 

function given by eq. (4) in R package and then using the 
algorithm developed in R to obtain the maximum likelihood 
estimates and standard error for the parameters. 
 
Table -1: Simulation study- parameter values used for 
simulation (true), MLE and standard errors (SE) for the 
parameters 
 

n 

 

     

R 

100 0.053 

(0.011) 

1.23 

(0.531) 

0.054 

(0.031) 

0.992 

(0.009) 

4.236 

(0.652) 

0.053 

(0.004) 

0.612 

(0.571) 

200 
0.048 

(0.005) 

1.171 

(0.313) 

0.052 

(0.003) 

1.005 

(0.004) 

4.209 

(0.125) 

0.051 

(0.002) 

0.647 

(0.348) 
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500 
0.051 

(0.003) 

1.103 

(0.373) 

0.052 

(0.002) 

0.996 

(0.001) 

4.121 

(0.101) 

0.051 

(0.002) 

0.689 

(0.327) 

1000 
0.049 

(0.001) 

1.093 

(0.213) 

0.051 

(0.001) 

0.999 

(0.002) 

4.103 

(0.065) 

0.049 

(0.001) 

0.714 

(0.447) 

 

5. APPLICATIONS 
 
 In reliability studies, we are interested in calculating the 
probability of the event X < Y, where X and Y are 
independent random variables. One of these situations is in a 
stress-strength model where X and Y are assumed 
respectively as strength and stress random variables. It has 
many applications especially in engineering concepts such as 
structures, deterioration of rocket motors, static fatigue of 
ceramic components, fatigue failure of aircraft structures, 
and the aging of concrete pressure vessels. In engineering 
science, safety margin (SM) and safety factor (SF) are 
functions of stress and strength and they are respectively 
settled as SM = Y - X and SF = Y/X and the most interest 
concerns in obtaining the probability p = Pr(SM > 0) = Pr(Y - 
X> 0) or Pr(SF > 1) = Pr(Y/X > 1). The practical applications 
no means confined to engineering or to military problems 
but also to medical statistics and other areas. Pr(X < Y) is of 
greater interest than just in reliability since it provides a 
general measure of the difference between two populations 
and has applications in many areas. One of the interesting 
applications is the relationship between the stress-strength 
models and the quality control concept, such as process 
capability indices. 
 

6. CONCLUSIONS 
 
R = Pr(X < Y) is of greater interest than just in reliability 
since it provides a general measure of the difference 
between two populations and has applications in many 
areas.  The derived the stress-strength reliability R of type II 
compound Laplace distributions has many applications in 
the field engineering, medicine and genetics. 
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