
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 12 | Dec -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 156

 Software Security Metrics

Prajakta J. Jadhav, Prof. Torana N. Kamble

 Computer Engineering Dept. Bharati vidyapeeth collage of Engineering, Navi Mumbai
Prof, Computer Engineering Dept. Bharati vidyapeeth collage of Engineering, Navi Mumbai

---***---

Abstract - On security issues, measurement is very
important for understanding and evaluating the performance
and comparison. Many metrics have propose to measure
various constructs of Object Oriented paradigm such as class,
coupling cohesion, inheritance, information hiding and
polymorphism and use for various aspects of software quality.
The use of static metrics is insufficient for Object Oriented
software due to presence of run time polymorphism, template
class, methods, dynamic binding and some code left
unexecuted due to specific input condition. For that use of
dynamic metrics instead of static metrics to compute the
software characteristics and deploy them for maintainability
prediction.

Key Words: Metrics, Software Security, Design level
Metrics, Code level Metrics

1.INTRODUCTION

Computer security the first step to take before
measuring any security is to define what exactly is meant by
‘security’. So what is computer security? Few actually
attempt to define it, even though most agree that having it is
good. In the scope of this thesis, computer security is defined
as in, which starts with dividing computer security into
software and application security. Other aspects of security
engineering, such as physical security, are not considered
while discussing computer security. The reason for this
narrow scope is an important idea expressed in and : The
central culprit of issues concerning computer security is
actually software security.

Software security- means designing, building and testing
software for its security. Software security should not be
confused with security software. The point of software
security is to ensure that people developing software do a
better job in considering security as an integral part of the
software. Software security takes into account both security
mechanisms and design for security. Software engineers,
built the software with security. Another problem in building
secure software is how to measure the security of the
software. A metric has multiple possible definitions
depending on the chosen source and some sources even try
to avoid using the term altogether . A useful metric is one
that “quantitatively characterizes a property”, implying that
there has to be a property to characterize.

The measurement theory also defines the terms
‘measure’, ‘measurement’ and ‘value’. A measure is
something that a metric needs, such as an instrument or a

formula that allow the metric to be applied to related objects
under inspection. A measurement is a process to get the
results with the measure. Finally, all measurements need to
end up with a value. According to, whenever there is a need
for a measurement, all measurements end up using these
five critical elements:

 The property to be measured needs to be identified.

 A metric needs to be defined to quantitatively
characterize the property.

 A measure needs to be developed that applies the
metric to a target.

 A measurement process needs to be designed.

 Each measurement needs to have a value and an
estimate of its accuracy.

In this thesis, the definition of metric is: “a consistent
standard for measurement” as defined in. According to, a
good metric should be:

 Consistently measured without subjective criteria.
 Cheap to gather, preferably in an automated way.
 Expressed as a cardinal number or percentage

instead of qualitative labels.
 Expressed using at least one unit of measure, such

as “defects”, “hours” or “dollars”.
 Ideally, it is contextually specific.

This thesis uses a simple measurement process as
presented in:

 Metrics need to be available.

 A suitable metrics framework needs to be chosen
and implemented.

 Measurements need to be interpreted.

Need-

Sometimes anything express in the number, you know
something about it. But when you cannot measure it when
you cannot express it for that we need metrics. We can not
control things which we can not measure. Metrics are used
to measure the quality of the project. Metrics is unit used for
describing an attribute. Metric is scale for measurement.
Before choosing suitable metrics frameworks, this chapter

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 12 | Dec -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 157

explores and presents the currently available software
security metrics.

1.1 Categories of Metrics:

Software security metrics can be categorized in

multiple ways that represent viewpoints or abstractions

within the metrics. The reason for different viewpoints is

obvious: a manager has very different needs for the metrics

from a software developer. The categories indicate the

environment where the metric works well or is designed to

work while showing where the metric is most likely to fail.

Here we are taking two categories:

I. Design Level Metrics (Static Metrics)

II. Code Level Metrics (Dynamic Metrics)

For design level metrics and code level metrics has same

properties:

1. Coupling

2. Cohesion

3. Inheritance

Property

Design Level
Metrics

Code Level
Metrics

Coupling DAC MPC
 MOA RFC
Cohesion CAM LOCM
Inheritance DIT
 NOC
 Fig.1 Properties based metrics

1. Coupling

Coupling means the degree of interaction an object has with

other objects. Objects with high coupling are greater target

for successful attacks than objects with small coupling.

1.1 Coupling support in design level metrics DAC-Data

Abstraction Coupling, MOA-Measure of Aggregation.

DAC-number of abstract types defined in a class. Abstraction

is a programmer hides all but relevant data about an object

in order to reduce complexity and increase efficiency. It

measure the number of object classes within the given class.

Any data type with other data types as members or local

variable that is an object of another class has data

abstraction coupling. Higher Data Abstraction Coupling is

more complex structure of the class.

MOA-Number of data declaration whose types are user

defined classes. This metric measures the extent of the part-

whole relationship, realized by using attributes. The metric

is a count of the number of data declarations (class fields)

whose types are user defined classes.

1.2 Coupling support in code level metrics MPC-Message

Passing Coupling, RFC-Response For Class.

MPC-It measures the number of message passing among

objects of the class. A large number indicates increased

coupling between class and other classes in system. Classes

are dependent on each other which increase the overall

complexity of system

RFC- The metric called the response for a class measures the

number of different methods that can be executed when an

object of that class receives a message. Ideally, we would

want to find for each method of the class, the methods that

class will call, and repeat this for each called method,

calculating what is called the transitive closure of the

method's call graph. This process can however be both

expensive and quite inaccurate. In ckjm, we calculate a rough

approximation to the response set by simply inspecting

method calls within the class's method bodies. The value of

RFC is the sum of number of methods called within the

class's method bodies and the number of class's methods.

2. Cohesion

It measure how well the methods of class are related to each

other. It has low cohesion and high cohesion several

describable including robustness, reusability,

understandability. Low cohesion several undesirable test

maintain reuse is very difficult.

2.1 Cohesion support in design level metrics CAM-Cohesion

Among Methods of Class

The sum of intersection of method parameters with the

maximum independent set of all parameter types in the

class. This metric computes the relatedness among methods

of a class based upon the parameter list of the methods. The

metric is computed using the summation of number of

different types of method parameters in every method

divided by a multiplication of number of different method

parameter types in whole class and number of methods. A

metric value close to 1.0 is preferred.

2.2 Cohesion support in code level metrics LOCM-Lack of

Cohesion Method

It indicates whether a class represents a single abstraction or

multiple abstractions. If class represents more than one

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 12 | Dec -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 158

abstraction, it should be refectories into more than one class

each of represent the single abstraction. Aim of this is to

detect problem of classes. If the LOCM value is high, it means

low cohesion.

3. Inheritance

Inheritance allows to provide classes with generalizations

and special relationships. Inheritance allows reuse.

Inheritance could allow subclasses access to classified

information. It measure various aspect of inheritance such as

depth and breadth in hierarchy and overriding complexity.

3.1 Inheritance does not support in design level metrics.

3.2 Inheritance support in code level metrics DIT-Depth of

Inheritance Tree, NOC-Number of Class.

DIT-Depth of Inheritance Tree

 The (DIT) metric provides for each class a measure of the

inheritance levels from the object hierarchy top. In Java

where all classes inherit Object the minimum value of DIT is

1. And root class consider as an zero.

NOC-Number of class

It measure the total number of direct subclasses of a class at

run time. Classes with large number of children are

considered to be difficult to modify, so required testing

because of the effect on change on all children. It is more

complex because they have numerous children.

4. Comparing design and code level metrics

Boehm observed that fault removal is 50 to 100 times less

costly when performed in the design phase rather than after

the deployment. As a practical point of view, software

engineers need to be aware that the metrics results are tool

dependent, and that these differences change the advice the

results imply. As a scientific point of view, validations of

software metrics turn out to be even more difficult. Since

metrics results are strongly dependent on the implementing

tools, a validation only supports the applicability of some

metrics as implemented by a certain tool. More effort would

be needed in specifying the metrics and the measurement

process to make the results comparable and generalizable.

5.CONCLUSIONS

Software metrics are usually used to measure some aspect

associated with software development. These aspects may

include estimation, detection and prevention of issues. The

utilization within measurement framework and the use of

automated tools can help towards development process

control and higher quality software, so the design and code

level metrics are not same in performance. Code level

metrics is better than the design level metrics.

REFERENCES

[1] Hemlatasharma, Anuradha chug “Dynamic metrics are

superior than static metrics in maintainability
predication”,IEEE Transactions on 2015M. Young, The
Technical Writer’s Handbook. Mill Valley, CA: University
Science, 1989.

[2] Chidamber S.R., Kemerer, C.F.: "A metrics suite for
object-oriented Design", IEEE Transactions on SW
Engineering, Vol. 20, No.6, June 1994.K. Elissa, “Title of
paper if known,” unpublished.

[3] C. B. Chowdhury, Istehad and M. Zulkernine, “Security
metrics for source code structures,” in Proceedings of
the Fourth International Workshop on Software
Engineering For Secure Systems. Leipzig, Germany:
ACM, 2008, pp. 57–64.

[4] Everald E. Mills : “ Software Metrics”, SEI Curriculum
Module SEI-CM-12-1.1, Software Engineering Institute,
Carnegie Mellon University, December 1988.

[5] K. Maruyama, “Secure refactoring - improving the security
level of existing code,” in Proceedings of the Second
International Conference Software and Data Technologies
(ICSOFT 2007), Barcelona, Spain,2007, pp. 222–229.

[6] R. Malhotra, A. Chug, “An Empirical Study to Redefine the
Relationship between Software Design Metrics and
Maintainability in High Data Intensive Applications” ,
Lecture Notes in Engineering and Computer Science,
Proceedings of The World Congress on Engineering and
Computer Science, USA, pp. 61-66, 2013.

[7] J. Alghamdi, R. Rufai, and S. Khan. Oometer: A software
quality assurance tool. Software Maintenance and
Reengineering, 2005. CSMR 2005. 9th European
Conference on, pages 190–191, 21-23 March 2005.

[8] Aqrissoftware. http://www.aqris.com/.

