
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 12 | Dec -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 843

A Review of Discrete Wavelet Transformation Implementation in GPU

through Register Based Strategy

Hemkant B. Gangurde, Dr. M. U. Kharat

1PG Student, Department of Computer Engineering, MET’s institute of Engineering, Nashik, Maharashtra 422003
2Professor and Head Department of Computer Engineering, MET’s institute of Engineering, Nashik, Maharashtra

422003.

---***---

Abstract - The significant architectural changes made by
Nvidia during the launch of Kepler architecture in the
middle of 2012 has provided GPUs with a greater register
memory and rich instructions set to have communication
between registers through available threads. This created a
potential for new programming approach which uses
registers for sharing and reusing of data in context of the
shared memory. This kind of approach can considerably
improve the performance of applications which reuses
implied data heavily. This work puts a review of register-
based implementation of the Discrete Wavelet Transform
(DWT), the data decorrelation technique in the field of
image and video coding. Results of this particular approach
indicates that this method is, at least, four times faster than
the best GPU implementation of the DWT in past.
Experimental tests also proves that the approach we are
studying shows performance close to the GPUs performance
limits.

Key Words: Kepler, GPU, DWT.

1.INTRODUCTION

 Computational power of GPUs growing notably day by
day. Previously GPUs were only used to decrement the
graphics rendering burden due to CAD(computer-aided
design) or high graphics video games on CPUs. GPUs are
currently used for mainstream applications as well. During
the evolution of GPU’s it has gone through major changes
in its architecture. The most important change was the
release of Compute Unified Device Architecture (CUDA) in
2006 of the Nvidia , which provided architectural tools for
general purpose computing together along with C
compiler for the GPU to have GPU programming. While
using GPU for the implementation of mainstream
application one must has to take care so that the potential
of the GPU capacities get fully exploited. Managing the data
internally is the important aspect. The important factor in
GPU based implementation is storing required data in the
legitimate memory spaces. Memory space of GPU is
divided in three areas : global memory, shared memory,
and register based memory. Global memory is the largest,

situated off-chip DRAM which shows largest latency.
Register and the shared memory are located on-chip and
does get managed accordingly. In comparison they are
much faster than the global memory, but their size is much
smaller. The important deviation between the register
memory and the shared memory is that the shared
memory is more commonly used for storing and reusing
intermediate results and sharing data between threads
efficiently. The arithmetic and logical operations are
performed in register memory where threads are private
in registers.

 During the launch of CUDA, Nvidia has released the
guidelines[2] which has strongly recommended to use
shared memory for the operations such as sharing and
reusing of data. But, these recommendations were
challenged by Volkov and Demmel [3], [4], who explored
that an extreme use of the shared memory may decrement
the level of performance. Three factors are responsible for
this. The first one is the bandwidth of the shared memory
that, though it is very high, it might act as bottleneck for
the applications which uses previously used data heavily.
The next factor is that ALU dependant operations whose
data is located in the shared memory must move it to
registers before performing the required operations. Third
one is that the shared memory space is smaller than
register memory space. Volkov and Demmel [3], [4] shown
that the its possible to gain the GPU's performance by
direct use of the register memory, by minimizing the
interference of the shared memory. These results
suggested that maximum performance can be obtain when
the registers are used as the main local storage space
while reusing the data.

 In Kepler architecture launched in 2012, the size of the
register memory space is made twice as previous, and the
number of registers that single thread can able to manage
has been made four times as that of the previous, also a
new instructions set is introduced to enable the data
sharing in the register space. These improvements helped
register-based implementations to program the GPU.
Which is an emerging programming approach to have the
better and faster implementation of the applications which
can able to use GPUs efficiently.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 12 | Dec -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 844

 The discrete wavelet transform (DWT) is an
implementation of the wavelet transform using a discrete
set of the wavelets and translations following some
defined rules. This DWT transform decomposes the signal
into mutually orthogonal set of wavelets, which is the
main difference from the continuous wavelet transform or
its implementation for the discrete time series sometimes
called discrete-time continuous wavelet transform.

 A GPU based implementation using Nvidia hardware
needs the understanding of CUDA . CUDA(Compute Unified
Device Architecture) is a parallel computing platform and
application programming interface (API) model launched
by Nvidia in 2006. It allows developers and software
engineers to use a CUDA-enabled graphics processing unit
(GPU) for general purpose processing an approach termed
GPGPU (General-Purpose computing on Graphics
Processing Units). The CUDA platform provides a software
layer which gives direct access to the GPU’s set of virtual
instruction and parallel computational elements, for the
execution of compute kernels. The CUDA platform is
compatible with programming languages such as C, C++,
and Fortran. This makes it easier for specialists in parallel
programming to use GPU resources, in contrast to
previous APIs like OpenGL and Direct3D, which required
advanced skills in GPU programming. In addition to that,
CUDA supports programming frameworks such as
OpenACC and OpenCL.

 In this paper we are reviewing the register-based
implementation strategy for the DWT[1]. Discrete Wavelet
Transformation which is a technique for data
decorrelation in the area of video and image coding. It’s
usage found in international compression standards which
include JPEG, also in number of coding schemes which
includes SPIHT, EBCOT, or SPECK. In order to implement
the DWT using GPU as hardware data reuse must be
considered significantly. There are many different
approaches present in the literature so that data could be
reused efficiently. The use of a register based strategy
allows a particular approach that differs significantly from
the previous methods. In the register based
implementation of DWT has to be implemented and
rethought from scratch. The most important aspects are
partitioning of data and thread-to-data mapping in GPU
memory spaces. The strategy which we are reviewing here
achieves speedups of 4 times in comparison with the best
methods found in the literature.

2.RELATED WORK

 Since lot of work and efforts has been taken while
providing the efficient way to implement the DWT. In this
section we had discussed about existing techniques used
to implement DWT.

 The implementations before emerging of CUDA, DWT
were employed over number of devices and different
programming languages based upon GPU as a hardware.
The implementation proposed in [6], was based on
OpenGL which introduced a decomposition of wavelet and
reconstruction algorithm, which directly works on the
graphics hardware of OpenGL capable workstations and
accelerates the time consuming filtering steps results in
saving the time. This particular approach has used the
convolution and color matrix extensions together with
OpenGL's facilities to scale images during copy
instructions, they performed all necessary steps of 2D
tensor product wavelet filtering without copying data
from or to the machines main memory, thus succeeded in
avoiding typical bottlenecks which could occur in the
visualization cycle. Open Graphics Library (OpenGL) is a
cross language, cross-platform application programming
interface(API) to render 2D and 3D vector graphics. The
API is commonly used to have interaction with a graphics
processing unit (GPU), to achieve faster graphics
rendering. Whereas [7], [8] employed OpenGL and
Computer graphics together. Lots of these earliest
methods were concentrated on convolution based
operations.

 DWT was evaluated for the first time using lifting
scheme [8]. In [8] they demonstrated a simple but
powerful and cost effective solution to implement 2-D
DWT on the consumer level GPU. No tailor made in that
and no expensive DWT hardware is needed to achieve
such performance. They have shown that 2-D DWT can be
implemented on any SIMD-based GPU comes with normal
configuration of PCs. This method unifies the
mathematically-different forward and inverse DWT.
Different wavelet filter kernels and boundary extension
schemes are incorporated by modifying the filter kernel
values and indirect address table respectively. [8] also
demonstrated 2D-DWT applicability in wavelet-based
geometric deformation, stylized image processing, texture-
illuminance decoupling, and JPEG2000 encoding. Though
the convolution based approach was popular previously as
the lifting scheme requires intermediate values to be
shared among coefficients. Tools were unavailable to
implement lifting scheme efficiently in the past. Which was
confirmed in [9] experimentally, in which both the
convolution and the lifting approach were implemented
and compared for the performance together.
 The general-purpose GPU architecture as well as
associated programming tools were lacking in the
previously mentioned pre-CUDA implementations. The
operations present in the DWT must be related to graphics
operations, which found to be limited in past. Even these
works were far more faster compared to a CPU-based
implementation, their performance is could have been
more with current GPUs that have an advanced memory
hierarchy and support for general purpose GPU

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 12 | Dec -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 845

computing. One of the most important thing in current
CUDA based implementations is the way image gets
partitioned in order to allow parallel processing scheme.
There are three main schemes employed in the for
partitioning, called row-column scheme, row-block
scheme, and block-based scheme.

 The first implementation based upon CUDA of DWT
was mentioned in [10]. Which uses the row column
scheme. At start, a thread block loads a row of the image
into shared memory then threads compute the horizontal
filtering on that row. The first CUDA based
implementation which combines lifting scheme as well as
block-based scheme to implement DWT was addressed in
[11]. The important factor of this approach was that it
decreases transfers to the global memory as it evaluates
horizontal and the vertical filtering in a one computation
step. In this method the image is partitioned in rectangular
blocks that needs to be loaded in the shared memory by a
thread block. Then both horizontal filtering and the
vertical filtering are applied to these blocks, in this their is
no need of further memory transfers or need of a matrix
transpose operation. The drawback in this kind of
approach is that there is dependencies of data between
blocks which are next to each other. These dependencies
are not taken care in [11]. The simple solution is to extend
all blocks with some rows and columns which overlaps
with adjacent blocks.

 The fastest implementation of the Discrete Wavelet
Transformation was present in the literature, which was
explored in [12]. In this approach the row-block scheme
was used, which also extends to any number of
dimensions. The method tries to maximize coalesced
memory access. They compared their method to an
optimized CPU implementation of the lifting scheme, to
another (non-CUDA based) GPU wavelet lifting method,
and also to an implementation of the wavelet transform in
CUDA via convolution. They implemented method for both
2D and 3D data. The method is scalable and was shown to
be the fastest GPU implementation among the methods
considered. The first step involved in this approach is
similar to the row-column based scheme. In that it first
loads rows of an image to the shared memory in order to
apply the horizontal filtering. Data are then stored in
global memory segment. The second step shows similarity
with block-based scheme, which do partition the image
into vertically stretched blocks that are loaded to the
shared memory. Rectangular blocks which are next to each
other in the vertical axis are operated by the same thread
block. This makes possible to thread block to reuse data
which is situated at the borders of the blocks, results in
handling the previously mentioned problem of data
dependency of data. The setback of this particular
approach is its requirement of two steps, which results in
requirement of more accesses to the global memory. They

have compared their implementation to convolution-
based implementations and to the row-column scheme.
Results conclude that the lifting scheme with the row-
block partitioning scheme is one of the faster method.

 Implementation in [1] is where it took to the next level
considering the architectural changes made by Nvidia. [1]
introduced an implementation of the DWT in a GPU
through a register-based strategy. This kind of
implementation approach has recently become possible in
the latest CUDA architectures as they have expanded
register memory space and also introduced new set of
instructions. The most important feature of this method is
the use of the register based memory space to carry all
operations and an effective use of block-based
partitioning scheme and thread to data mapping operation
which permits the assignment of warps to process all data
of a block. Experimental results indicate that the register-
based strategy proved to be better in performance than
the use of shared memory as it requires less number of
instructions and able to achieve higher GPU utilization.

3.EXISTING METHODOLOGY

 The DWT is one of the signal processing technique
which is derived from the Fourier transformation analysis.
DWT applies various banks of filters to the input which
then decompose the low frequencies and high frequencies
of the signal. In the field of image coding, the forward
operation of the Discrete Wavelet Transformation is
applied to the original set of pixels present in an image in
the first step of the encoding operation. Generally, coding
systems use a dyadic decomposition of the DWT which
results into a multiresolution representation of the image.
This kind of representation organizes the wavelet
coefficients in different levels of resolution and subbands
that capture features of the image in the vertical,
horizontal, and diagonal form. To reconstruct the image
decoder is applied at last stage. Depending upon the filter
bank used, determines some of the features of the
transform. Most commonly, irreversible CDF 9/7 and the
reversible CDF 5/3 filter banks are used. The method[1]
we are reviewing implements both these filter banks. This
system deals with the implementation of DWT which is the
core part in most of the systems.
 The DWT can be implemented using either convolution
operation or by the lifting scheme. The lifting scheme
decreases the usage of memory and the number of
operations performed, thats why it is commonly employed
in DWT. It performs numerous steps on a discretely-
sampled one-dimensional signal, which is represented by
an vector. Every step results into the (intermediate)
wavelet coefficients which are then assigned to the even,
or to the odd, positions of the an array. Each coefficient is
computed using three samples: the even (or odd) position

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 12 | Dec -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 846

of the array, and its adjacent neighbors. This procedure
can be repeated number of times based upon the filter
bank used. The most important advantage of the lifting
scheme is that all coefficients in the odd (or even)
positions can be calculated parallely as they do not have
any dependencies among them.

 Most of the modern implementations, do use the lifting
scheme. The approach we are studying here stores the
image partitions data in the register memory. It’s very
much known that the row-column scheme is not much
popular due to its slower nature. The results also do
indicate that the block-based is not much effective as it
uses large amount of shared memory. This is the
important reason while introducing the row-block
scheme. This analysis is for CUDA architectures before the
kepler architecture. Both the row-block and the block
based schemes allow data transfers from/to the global
memory. The important deviation here is the number of
global memory accesses required. The row block scheme
requires the read and write operation of the image (or the
LL subband) two times. Entire data are accessed in a row-
by-row technique in the starting step. After the horizontal
filtering performed, the data are returned to the global
memory space. The whole image is accessed again using
vertical blocks so as to perform the vertical filtering. The
images which are larger in width, it is more efficient to
divide the rows in slices that are processed independently
due to fulfill the memory requirements.

4.CONCLUSION

 We studied the DWT(Discrete Wavelet Transformation)
implementation by various ways including non-CUDA
based approaches. Furthermore, we studied how the
lifting scheme for DWT implementation is better than the
convolution approach adopted previously before
introduction of GPU based architecture. In this paper we
studied, what are the main reasons behind the DWT
implementation using register based strategy and how the
architectural changes made by Nvidia helped for adopting
this particular approach.

REFERENCES

[1] Pablo Enfedaque, Francesc Aul-Llinas and Juan C.

Moure, “Implementation of the DWT in a GPU through
a Register-based Strategy”, in IEEE Trans.Parallel
Distrib. Syst, 2015.

[2] Nvidia, CUDA C Programming guide, 2014. Available:
http://docs.nvidia.com/cuda/cuda-c-programming-
guide.

[3] V. Volkov and J. W. Demmel, “Benchmarking GPU’s to
tune dense linear algebra”, in Proc. ACM/IEEE Conf.
Supercomputing, Nov. 2008, pp. 3142

[4] V. Volkov, “Better Performance at Lower Occupancy”,
in IEEE Int. Conf. Image Process., 2010.

[5] F. N. Iandola, D. Sheffield, M. Anderson, P. M.
Phothilimthana, and K. Keutzer, “Communication-
minimizing 2D convolution in GPU registers”, in Proc.
IEEE Int. Conf. Image Process., Sep. 2013, pp.
21162120.

[6] M. Hopf and T. Ertl, “Hardware accelerated wavelet
transformations”, in Proc. EG/IEEE TCVG Symp, 2000.

[7] A. Garcia and H.-W. Shen, “GPU-based 3D wavelet
reconstruction with tileboarding”, in Vis. Comput,
2005.

[8] T.-T. Wong, C.-S. Leung, P.-A. Heng, and J. Wang,
“Discrete wavelet transform on consumer-level
graphics hardware”, in IEEE Trans. Multimedia, 2007.

[9] C. Tenllado, J. Setoain, M. Prieto, L. Pinuel, and F.
Tirado, “Parallel implementation of the 2D discrete
wavelet transform on graphics processing units: filter
bank versus lifting”, in IEEE Trans. Parallel Distrib.
Syst, 2008.

[10] J. Franco, G. Bernabe, J. Fernandez, and M. E. Acacio, “A
parallel implementation of the 2D wavelet transform
using CUDA”, in Proc. 17th Euromicro Int. Conf.
Parallel, 2007.

[11] J. Matela, “GPU-based DWT acceleration for
JPEG2000”, in Proc. Annu. Doctoral Workshop Math.
Eng. Meth. Comput. Sci, 2009.

[12] W. J. van der Laan, A. C. Jalba, and J. B. Roerdink,
“Accelerating wavelet lifting on graphics hardware
using CUDA,”, in IEEE Trans. Parallel Distrib, 2011.

