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Abstract – In this paper decentralized sliding mode load 
frequency control is constructed for multi area power 
system with matched and mismatched parameter 
uncertainties. The proportional and integral switching 
surface is designed for each area to enhance the dynamic 
performance through reducing the chattering and 
overshoot during reaching phase. The controller design 
process has been theoretically proved based on Lyapunov 
stability theorem. Robustness of the proposed controller is 
illustrated by implementing it on the three area 
interconnected power system.  
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1. INTRODUCTION  
 
Load Frequency Control (LFC) has two major duties, 
which are to maintain the desired value of frequency and 
also to keep the tie line power exchange under schedule in 
the presence of any load changes [1]. Centralized and 
Decentralized control strategies for LFCs have been 
introduced in the literature. The LFC design based on an 
entire power system model is considered to be a 
centralized control method. Since the 1960s, centralized 
control methods have been used for LFC. Though 
centralized control method has advantages of low cost and 
high reliability, it can also cause communication delays for 
interconnected power systems. To solve this problem, 
decentralized control method [2] was first proposed in the 
1980s. Each area executes its decentralized control based 
on locally available state variables. The most traditional 
decentralized control methods for LFC are PI control and 
PID control. Sliding mode controller (SMC) is an another 
method to solve LFC problem. SMC is a nonlinear control 
strategy that is well known for its fast response and robust 
performance. The SMC can greatly improve the system 
transient performance and is insensitive to changes of 
plant parameters. Recently, the sliding mode load 
frequency controller (SMLFC) has been applied to solve the 

problems of power system with uncertainties. In this paper 

decentralised SMLFC with PI switching surface is proposed 

to solve the problem of LFC. In this SMC is combined with PI 

controller to assure the stable operation of the system around 

wide range of operating points. 

 
2. MULTI AREA SYSTEM MODEL 
 
Linearized model of the power system is considered for 
the Load Frequency control (LFC) problem because only 
small changes in the load are excepted during its normal 
operation. 

 
 
Fig1: Block diagram of ith area of interconnected power 
system 
 
 Dynamic equations of ith area of multi area system 

 
 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
Where i=1,2,3…N and N is number of areas. The matrix 
form of dynamic equations can be written as 
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where 

  ni

ix t R is a state vector, ( ) nj

jx t R is a neighboring  

state vector of  ix t , 
( )( ) mi

iu t R is the control vector, 

  ki

diP t R  is the vector of load disturbance 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
State variables          , , ,i gi gi i if t P t X t E t and t      

are changes in frequency, power output, governor  value 
position, integral control and rotor angle deviation 
respectively. TPi, TTi, and TGi are the time constants of 
power system, turbine, governor respectively. KEi, KBi, KPi, 

and Ri are the integral control gain, frequency bias factor, 
power system gain, and speed regulation coefficient 
respectively. Ksij is the interconnection gain between i and 
j (i≠ j).  
 
Consider the dynamic model of the system with parameter 
uncertainty 

 
 

 

Where ,i i i i i in n n m n k

i i iA R B R and F R
  

   are 

matrices of nominal parameters;                         represent 
parametric uncertainties. 

Defining 

as the aggregated uncertainty, equation(7) becomes 

                   

 

SMLFC with PI switching surface is designed based on the 
following assumptions to ensure the asymptotic stability 
of entire system 

Assumption 1: ,andi iA B  are fully controllable. 

Assumption 2:  The following condition is true for 
matched uncertainty (i.e. uncertainty which is in the range 

space of the input distribution matrix ( )ig t ).  

 

Where  ( ) im

ig t R
  

 

Assumption3: It is assumed that the aggregated 
disturbance ( )ig t  is bounded, i.e. there exists a known 

scalar 
id  such that  ||g ( ) ||i it d  where || ||  is matrix 

norm.  

3. INTEGRAL SWITCHING SURFACE  

SMC with Integral switching surface is also called as 
Integral Sliding mode controller (ISMC). To improve the 
dynamic performance and robustness during the reaching 
phase against the matched and unmatched parameter 
uncertainty, the proportional and integral (PI) switching 
surface [4] is selected as 

       

Where Ki and Gi are constant matrices. Ki is designed 
through pole placement such that the Eigen values of 

matrix ( )i i iA B K  are less than zero. 

The term -Gi Xi(0) ensures that (0) 0,i   so the reaching 

phase is eliminated. The sliding mode will exist from time 
t=0 and the system will be robust through the entire 
closed-loop system response against matched uncertainty. 

 It is approved in the next section that that the designed 
switching surface of the sliding mode can assure system 
asymptotic stability under both matched and unmatched 
uncertainty. 

3.1. Uncertainty with matching condition: During 

sliding  ( )   ( ) ̇ = 0 and therefore 
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If  gi(t) satisfies the matching condition i.e.,                                                                                                                                                                                                                            
the equivalent controller is derived as (12)   

 

                

It provides compensation for matched uncertainty. 

When the system enters in to sliding mode operation, the 

state trajectory can be controlled to be   ( )    by 

using ( )iequ t  

Substituting the (12) in to (8), the equivalent dynamic 
equation in sliding mode is as    

 

 

where  In  is an identity matrix 

 

Equation (13) becomes  

 

Ki is selected such that the   ̃  satisfy the constraint 

                           ||exp(  ̃  )||     exp (    )                    (15) 

Where   and    are positive constants 

The following lemma is used to prove the theorem 

Lemma 1 (Gronwall) [4] : Assuming that  ( ) and  ( ) are 
positive continuous function  

  ( )     ∫  ( ) ( )    
 

 
   for      t                              (16)                         

 ( )   k exp ∫  ( )  
 

 
                                                             (17)                                                   

Theorem 1: Equation (14) is asymptotically stable if (15) 
and the following inequality holds: 

                                           ̃   
 ̃

 
                                                (18)                                                
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Proof: Solving (14) equation gives  
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Taking the norm for both sides of Eq.(19), considering 

(15), and defining maximum Euclidean norm of 
ijE as  ̃  

then multiplying both sides of that Eq. by exp( ̃ ), gives 
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Equation (22) clearly shows that the overall power system 
with matched uncertainty is asymptotically stable under 
condition (15). 

3.2. Uncertainty with unmatched condition:  

Uncertainties in practical power systems are not always 
satisfies the ideal matching condition. Therefore, a new 
theorem is proposed to assure that system dynamic 
trajectory with mismatched uncertainty in sliding mode is 
stable, and it is theoretically proved in this section based 
on Lyapunov stability theorem considering the 
uncertainties satisfy the following two assumptions. 

Assumption 4: rank[ ̅    ( )        ̅   

Assumption 5: ‖  ( )‖       where || ||  is matrix norm 

and hi is a known positive constant. 

Under assumption (4), the equivalent controller with 
unmatched uncertainty is derived from (10) as 

1 1

1

( ) ( ) ( ) ( ) ( ) ( ) (23)
N

ieq i i i i i ij j i i i i

j
j i

u t K x t G B G E x t G B G g t 




   

Substituting (23) in (8), the equivalent dynamic equation 
with unmatched uncertainty in sliding mode is as 

 

 

  

where                  

 

Because there is a gain matrix Ki  for stable  ̃ , a 
symmetric positive definite matrix Qi  exists for  the 
following Lyapunov equation: 
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Where Pi is the solution of (23) for a given positive 
definite symmetric matrix Qi.. 

Theorem 2: For ( )x Bc  , system dynamic performance 

in sliding mode is stable at any time. Where ( )Bc   is the 

complement of the closed ball centered at 0x  with 

radius 

                           min
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Proof: considering the positive definite function 
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i i iv t x t P x t  as a Lyapunov candidate function and 

substituting (24) into the derivate of  v(t), gives 
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Based on assumption 5,
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When the state trajectory enters into the closed ball 

( )cB   and the Eigen value
min ( ) 0iQ  , the Lyapunov 

function satisfies  v t < 0. Therefore the dynamic system 

with mismatched uncertainty is stable in the sliding mode.  

4. SMLFC Control law Design 

For an interconnected power system the Reachability 
condition for each area is given by  

                                            
1
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It is a sufficient condition to ensure that at each time 
instant, the system state trajectories will converge 
towards the sliding surface. 

4.1 Control law for matched uncertainty 

Theorem 3: According to assumptions 1 and 2, a 
decentralized switching control law (31) can be designed 
to assure the hitting/Reachability condition (30) 

 

 

Ki is the state feedback controller which is responsible for 
the performance of the nominal system. 

where             and 

 

 

proof: constructing a Lyapunov function 
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 Substitute (11) into (32), gives 
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When the uncertainty satisfied the matching condition (9), 

and controller ( )iu t satisfies (30), ( )v t  becomes  
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Based on   ̃   definition and assumption 5, it is obvious that 

( ) 0i iv t    . Therefore the hitting condition (30) is 

assured by the designed controller (31).

 This theorem shows that control law (31) can drive 
system (8) to sliding surface (10) and maintain a sliding 
motion thereafter. 

4.2 Control law for unmatched uncertainty 

When the uncertainty is unmatched, the decentralized 
switching control law (33) can be designed to assure the 
hitting condition (28) 

     

 

Theorem 4 can be similarly proved as theorem 3. 
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5. SIMULATION RESULTS: 

In order to test the robustness of the controller five 
different cases without and with controller are considered.  

Case-1: Three area system with 0.1p.u step 
disturbance: 
 

In this base case nominal parameters without considering 
uncertainties are considered for three areas. 
 

 Fig-2: Frequency deviation of three area system for case1 
 
Fig.2 shows that Frequency deviation of three areas 
approaches to zero within 10sec because the PI controller 
performs the basic LFC function 

 
Case-2: Three area system with matched uncertainty 
 
In order to test the robustness of the designed SMLFC 
same matched parameter uncertianity(represented by 
cosine functions around nominal values) is considered for 
three areas. 
 

1

0 0 0 0 0

0 0 0 0 0

2.26cos( ) 2cos(t) 2.604cos(t) 3cos(t) 0

0 0 0 0 0

0 0 0 0 0

A t

 
 
 
    
 
 
    

 

 
Fig-3: Frequency deviation of three area system without 
SMLFC for the matched uncertainty 

Fig.3 shows that Frequency deviation for three areas 
without SMLFC have large overshoots within 15sec and 
cannot approach to zero 

 
 
Fig-4: Frequency deviation of three area system with 
SMLFC for the matched uncertainty 

 
Fig.4 shows that frequency deviation approaches to zero 
within 10sec, which has the faster response speed than 
that in Fig.3 because the matching uncertainty is 
compensated by the SMLFC.  

Case3:Three area system with unmatched uncertainty 
 
The performance of the three area system for different 
unmatched uncertainty(                           
            ) is shown in fig. 5. 
 

 
Fig-5: Frequency deviation of three area system without 
SMLFC for the unmatched uncertainty 

 
Fig.5 shows that frequency deviation of three areas 
without SMLFC cannot approach to zero after the 
disturbances. 
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Fig-6: Frequency deviation of three area system with 
SMLFC for the unmatched uncertainty 

 

 
Fig-7: Tie line power deviation of three area system with 
SMLFC for the unmatched uncertainty 
 
Fig.6 & Fig.7 shows that frequency and the tie line power 
deviation of each area reaches to zero with the designed 
SMLFC 

 
                                Fig8: switching surface   (t) 

 

 
 
                          Fig9: sliding mode controller    (t) 

 
The switching surface function and the control law of the 
controller in Area1 of the three area system for the case of 
unmatched uncertainty is shown in Fig.8 and Fig.9.  

Case-4: Three area system with GRC and unmatched 
uncertainty using SMLFC 

The Dynamic response of the three area system with 
generation rate constraint [4] and unmatched uncertainty 
is shown in fig.10. For thermal system a generating rate 
limitation of 0.1pu is considered, the equations of GRC [4] 
are derived and given below:   

    ̇                         p.u.M W/s 

 

 
Fig-10: Frequency deviation of three area system with 
SMLFC for case-4 
 

Fig.10 shows that there is same overshoot, but longer 
settling time compared with those when GRC is not 
considered in Fig 6. Therefore the system without the GRC 
performs better. It also shows that the SMLFC can also 
make the system stable with the GRC. 
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In order to test the robustness of proposed controller 
against the system parameter variations, the range of 
parameter variations -20% to +20% of their nominal value 
is considered [5] 

 
Fig-11: Frequency deviation of area1 with parameter 
variations for case-4 
Case-5: Three area system with GRC, GDB and 

unmatched uncertainty using SMLFC In this paper 0.1% 

of dead band nonlinearity is considered. 

 

 
 
Fig-12: Frequency deviation of three area system with 
SMLFC for case-5 

 
 
Fig-13: Frequency deviation of area1 with parameter    
variations for case-5 

8. APPENDIX 

 
DATA: Parameters of the three area Interconnected Power 
system are given below :  

Area                                 

1 120 20 0.3 0.08 0.8 0.41 0.055 2.4 

2 112.5 25 0.33 0.072 0.8 0.37 0.065 2.7 

3 115 20 0.35 0.07 0.8 0.4 0.0545 2.5 
 

Nominal plant models for three areas [6] 

6. CONCLUSIONS 

In this project, a novel decentralized SMLFC with PI 

switching surface is designed to solve the Load frequency 

control (LFC) problem of multi-area interconnected power 

systems with matched uncertainties and unmatched 

uncertainties. This controller uses the Local state 

measurements to regulate the frequency deviation of each 

area. The controller design process has been theoretically 

proved in this project based on Lyapunov stability theory 

to assure that frequency deviation reaches zero. 

Robustness of the controller against the uncertainties and 

nonlinearities is tested in the three-area interconnected 

system. Fast frequency responses and insensitive to 

parameter variations and load disturbance show that the 

performance of the proposed control strategy is effective 

and reliable. In future the proposed controller can be 

applied to multi area interconnected power system 

containing renewable energy. 
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