
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 12 | Dec -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 326

A Comparative Study of Selection Sort and Insertion Sort Algorithms

Fahriye Gemci Furat

Research Assistant, Department of Computer Engineering, Iskenderun Technical University, Hatay, Turkey

---***---

Abstract - The ordering of numbers in an integer array in
computer science and mathematics is one of the research
topics in the literature. For the purpose, there are a large
variety of sorting algorithms like Selection sort, Insertion sort,
Quick sort, Radix sort, Merge sort and Bubble sort. In this
study, two sorting algorithms of these algorithms are
investigated as Selection and Insertion sort. This study
compares performance of Selection sort and Insertion sort
algorithms that are used commonly in terms of running time.

Key Words: Sorting Algorithm, Selection Sort, Insertion Sort,
Time Complexity.

1. INTRODUCTION

The need for regular knowledge resulting from
increased knowledge results in increasing development of
data structures and algorithms. Sorting process in data
structure is to make randomly distributed elements into
elements in decreasing order or ascending order. Lots of
sorting algorithms such as Selection sort, Insertion sort,
Quick sort and Radix sort are developed in order to decrease
complexity and increase performance of sorting.

In [1], the criterias that are given to compare
performance of sorting algorithms are time efficiency, space
efficiency, number of comparisons, number of data
movements and stability of the sort technique. There is a lot
of research in the literature such as [2, 3, 4, 5, 6, 10, 11, 12,
15]. In this study, time efficiency of these criterias is
investigated to compare Selection sort and Insertion sort
algorithms.

Performance of Selection sort and Shell sort is
compared in terms of running time in [2]. Although shell sort
shows better performance than selection sort, selection sort
is more used because of its more simple structure. [2].

In [3], Enhanced Bubble sort and Enhanced Selection
sort are explained. In addition, Selection sort, Enhanced
Selection sort, Enhanced Bubble sort and Bubble sort are
compared in terms of number of comparisons, swaps and
time [3].

In [4], Grouping Comparison Sort algorithms (GCS)
are introduced. Selection sort, Insertion sort, Merge sort,
Quick sort, Bubble sort and GCS are compared in terms of

time complexity. As a result of this comparison, Quick sort is
the fastest and the selection sort the slowest for the large
number of elements.

In [6], performance of Quick sort and Merge sort are
compared in terms of time complexity. When number of
elements is large, performance of Quick sort is better than
Merge sort. In contrary, when number of elements is less,
performance of Merge sort is better than Quick sort [6].

In [15], Quick sort for the large number of elements is the
fastest algorithm, when compared to Quick sort, Selection
sort, Insertion sort, Bubble sort, Shell sort and Cocktail
sort.

In this study Selection sort and Insertion sort are
compared in terms of running time. In chapter 2, Selection
sort algorithm is explained. Work logic of this algorithm is
explained with an example. Code of the algorithm is
implemented using Java Programming Language. Running
time for sorting using this algorithm is given. In chapter 3,
Insertion sort algorithm is explained. Work logic of this
algorithm is explained with an example. Code of the
algorithm is implemented using Java Programming
Language. Running time for sorting using this algorithm is
given. In chapter 4, comparison of Selection sort and
Insertion sort algorithm are given in terms of time
complexity.

2. SELECTION SORT ALGORITHM

2.1 Selection Sort Algorithm

Selection sort is a simple comparison based sorting

algorithm. Selection sort algorithm starts to finds the

smallest element in the array. Then it exchanges this

smallest element with the element in the first position. After

this first step, this algorithm tries to select a smallest

element in unsorted part of the array in each step of the sort.

It exchanges this selected smallest element with the element

in the unsorted part of this step of the sort. Until there are no

unsorted elements in the array, this process continues.

Selection sort algorithm spends most of its time to find the

smallest element in the unsorted part of the array [1, 2, 3, 7,

8, 13, 15].

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 12 | Dec -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 327

2.2 Work Logic of Selection Sort Algorithm on a
Sample

Suppose that n is the number of elements in the array, the

below integer array with 8 elements is given, so n number is
8 for this sample and sorting of this integer array in
ascending order is wanted:

90 80 70 60 50 40 30

1. Step

In this step, the smallest element in the array is
found and exchanges with element in the first
index.

90 80 70 60 50 40 30

30 80 70 60 50 40 90

2. Step

In this step, the second smallest element in the
array is found and exchanges with element in the
second index. In addition, the second smallest
element in the array is the smallest element of
the unsorted part of array.

30 80 70 60 50 40 90

30 40 70 60 50 80 90

3. Step

In this step, the third smallest element in the
array is found and exchanges with element in the
third index.

30 40 70 60 50 80 90

30 40 50 60 70 80 90

After the 3. step for above sample, in fact the integer array is
sorted in ascending order. Although the array is sorted after
the 3. step, the selection algorithm continues to search small
numbers as 4. step, 5.step,…, n. step. In some studies like
[3], this process finishes when the array is sorted. But it is
not correct, because of not checked whether is sorted all
integer numbers of array.

 The selection sort algorithm continues to search small
elements until the cycles are finished. So selection algorithm
can improve to control whether the array is sorted. General
Selection sort algorithm steps continue in the following:

4. Step

30 40 50 60 70 80 90

30 40 50 60 70 80 90

 …

2.3 Implementation of Selection Sort Algorithm
Using Java Programming Language

A code of selection sort algorithm with Java

programming language is shown below:

public static int [] selectionsort(int [] A,int n)

 {

 int tmp;

 int min;

 for(int i=0; i< n-1; i++)

 {

 min=i;

 for(int j=i; j<n; j++)

 {

 if (A[j]<A[min]){

 min=j;

 }

 }

 tmp=A[i];

 A[i]=A[min];

 A[min]=tmp;

 }

 return A;

 }

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 12 | Dec -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 328

2.4 Selection Sort Algorithm Running Time

Table -1: Running time to sort arrays using Selection sort

Number

of

elements

Full

sorted

array

Semi

sorted

array

Unsorted

array

1,000 0.003 s 0.002 0.001 s

10,000 0.103 s 0.098 s 0.1 s

100,000 10.233 s 10.455 s 9.621 s

3. INSERTİON SORT ALGORİTHM

3.1 Insertion Sort Algorithm

Insertion sort is a simple comparison based sorting

algorithm. Insertion sort algorithm starts to compare the

first two elements in array. If the first element is bigger than

the second element, they are exchanged with each other.

This process is implemented for all neighbour indexed

elements [7, 8, 14, 15].

3.2 Work Logic of Insertion Sort Algorithm on a
Sample

Suppose that n is the number of elements in the array, the

below integer array with 8 elements is given, so n number is
8 for this sample and sorting of this integer array in
ascending order is wanted:

90 80 70 60 50 40 30

1. Step
In this step, the element in the first index in the
array exchanges with element in the second
index, if the element in the second index are
smaller than the element in the first index.

90 80 70 60 50 40 30

80 90 70 60 50 40 30

2. Step
In this step, the element in the second index in the
array exchanges with element in the third index, if the
element in the third index are smaller than the
element in the second index.

80 90 70 60 50 40 30

80 70 90 60 50 40 30

3. Step

80 70 90 60 50 40 30

80 70 60 90 50 40 30

4. Step

80 70 60 90 50 40 30

80 70 60 50 90 40 30

5. Step

80 70 60 50 90 40 30

80 70 60 50 40 90 30

6. Step

80 70 60 50 40 90 30

80 70 60 50 40 30 90

3.3 Implementation of Insertion Sort Algorithm
Using Java Programming Language

Public static int [] insertionSort(int [] A,int n)

{

 int tmp;

 for(int i=1; i<n; i++) {

 for(int j=i; j > 0 && A[j] < A[j-1]; j--) {

 tmp=A[j];

 A[j]=A[j-1];

 A[j-1]=tmp;

 }

 }

 return A;

}

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 12 | Dec -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 329

3.4 Insertion Sort Algorithm Running Time

Table -2: Running time to sort arrays using Insertion sort

Number of

elements

Full sorted

array

Semi sorted

array

Unsorted

array

1,000 0 s 0.002 s 0.002 s

10,000 0 s 0.099 s 0.127 s

100,000 0 s 9.423 s 12.449 s

4. COMPARISON OF SELECTION SORT AND
INSERTION SORT ALGORITHM

In this study, nine different integer arrays are sorted

using Selection sort and Insertion sort algorithms as three of

the arrays with 1,000 elements, three of the arrays with

10,000 elements and three of the arrays with 100,000

elements. Three arrays having 1,000, 10,000 and 100,000

elements, that are called full sorted array consists of

sequential numbers in ascending order from 1 to 1,000, from

1 to 10,000 and from 1 to 100,000, respectively. Three

arrays having 1,000, 10,000 and 100,000 elements, that are

called semi sorted array consists of sequential numbers in

ascending order from 1 to 499 and in descending order from

500 to 1, from 1 to 4,999 and in descending order from 5,000

to 1, and from 1 to 49,999 and from 50,000 to 1, respectively.

Remaining three arrays having 1,000, 10,000 and 100,000

elements that are called unsorted array consists of

sequential numbers decreasing from 1,000 to 1, from 10,000

to 1 and from 100,000 to 1, respectively. In Table-3, results

of these sorting processes are given in terms of running time.

 Insertion sort algorithm sorts three full sorted
arrays having 1,000 elements, 10,000 elements and 100,000
elements in 0 second, while Selection sort algorithm sorts
full sorted arrays having 1,000 elements, 10,000 elements
and 100,000 elements in 0.003 s, 0.103 s and 10.233 s,
respectively. Therefore a full sorted array consists of
sequential numbers in desired order, sorting process for
these sorted arrays are expected to not waste time. On the
contrary, as seen in Table-3, Selection sort spends seconds to
sort full sorted arrays.

 Selection sort for semi sorted arrays having 1,000
elements and 10,000 elements gives same performance with
Insertion sort. On the other hand, when number of elements
in the array increases to 100,000, Insertion sort outperforms
Selection sort.

Selection sort for unsorted arrays works better
more than Insertion sort in terms of time. Running time of

Selection sort for unsorted arrays is getting shorter than
Insertion sort.

Table -3: Running time to sort arrays using Selection sort
and Insertion sort

 Selection Sort

Running Time

(Second)

Insertion Sort

Running Time

(Second)

Full sorted

array with

1,000

elements

0.003 s 0 s

Semi sorted

array with

1,000

elements

0.002 s 0.002 s

Unsorted

array with

1,000

elements

0.001 s 0.002 s

Full sorted

array with

10,000

elements

0.103 s 0 s

Semi sorted

array with

10,000

elements

0.098 s 0.099 s

Unsorted

array with

10,000

elements

0.1 s 0.127 s

Full sorted

array with

100,000

elements

10.233 s 0 s

Semi sorted

array with

100,000

elements

10.455 s 9.423 s

Unsorted

array with

100,000

elements

9.621 s 12.449 s

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 12 | Dec -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 330

5. CONCLUSIONS

To compare Selection sort with Insertion sort, these two
algorithms have different advantages in different situations.
Therefore, it can not be said that one of them is more
successful than the other completely. Insertion sort
algorithm for full sorted arrays ourperforms Selection sort
algorithm in term of running time. On the contrary, Selection
sort for unsorted arrays outperforms Insertion sort in term
of running time.

REFERENCES

[1] Abdulla, Mirza. "An O (n^(4/3)) worst case time

selection sort algorithm." IJCER 5.3 (2016): 36-41.

[2] Adhikari, Pooja., "Review On Sorting Algorithms A
comparative study on two sorting
algorithms." Mississippi State, Mississippi 4 (2007).

[3] Raza, Muhammad Ali, et al. "Comparison of Bubble Sort
and Selection Sort with their Enhanced Versions.".

[4] Al-Kharabsheh, Khalid Suleiman, et al. "Review on
Sorting Algorithms A Comparative Study." International
Journal of Computer Science and Security (IJCSS) 7.3
(2013): 120-126.

[5] Aliyu, Ahmed M., and P. B. Zirra. "A Comparative
Analysis of Sorting Algorithms on Integer and Character
Arrays." The International Jornal of Engineering and
Science (2013): 25-30.

[6] Grover, Deepti, and Sonal Beniwal. "Performance
Analysis of Merge Sort and Performance Analysis of
Merge Sort and Quick Sort: MQSORT.".

[7] Sharma, Sunny, et al. "VRF: A Novel Algorithm for
optimized Sorting." (2016).

[8] Zafar, Sardar, and Abdul Wahab. "A new friends sort
algorithm." Computer Science and Information
Technology, 2009. ICCSIT 2009. 2nd IEEE International
Conference on. IEEE, 2009.

[9] Alnihoud, Jehad, and Rami Mansi. "An Enhancement of
Major Sorting Algorithms." Int. Arab J. Inf. Technol. 7.1
(2010): 55-62.

[10] ALI, WAQAS, et al. "COMPARISON OF DIFFERENT
SORTING ALGORITHMS." International Journal of
Advanced Research in Computer Science and Electronics
Engineering (IJARCSEE) 5.7 (2016): pp-63.

[11] Rajagopal, D., and K. Thilakavalli. "Different Sorting
Algorithm’s Comparison based Upon the Time
Complexity." (2016).

[12] Jadoon, Sultanullah, Salman Faiz Solehria, and Mubashir
Qayum. "Optimized selection sort algorithm is faster
than insertion sort algorithm: a comparative
study." International Journal of Electrical & Computer
Sciences IJECS-IJENS11.02 (2011): 19-24.

[13] Abdulla, Mirza. "Selection Sort with Improved
Asymptotic Time Bounds.". The International Journal of
Engineering and Science (THE IJES), To Appear May-
2016.

[14] Min, Wang. "Analysis on 2-element insertion sort
algorithm." Computer Design and Applications (ICCDA),
2010 International Conference on. Vol. 1. IEEE, 2010.

[15] Yadav, Neelam, and Sangeeta Kumari. "SORTING
ALGORITHMS." IRJET (2016).

