
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 12 | Dec -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 68

Analyzing Information Flow in Java based Browser Extensions

 Dr.T.Pandikumar1, Teklish Girma2

1Ph.D. Department of Computer & IT, College of Engineering, Defence University, Ethiopia
2M.Tech. Department of Computer & IT, College of Engineering, Defence University, Ethiopia

---***---

Abstract - JavaScript-based browser extensions (JSEs)
enhance the core functionality of web browsers by
improving their look and feel, and are widely available
for commodity browsers. To enable a rich set of
functionalities, browsers typically execute JSEs with
elevated privileges. For example, unlike JavaScript code
in a web application, code in a JSE is not constrained by
the same-origin policy. Malicious JSEs can misuse these
privileges to compromise confidentiality and integrity,
e.g., by stealing sensitive information, such as cookies
and saved passwords, or executing arbitrary code on
the host system. Even if a JSE is not overtly malicious,
vulnerabilities in the JSE and the browser may allow a
remote attacker to compromise browser security. We
present SABRE (Security Architecture for Browser
Extensions), a system that uses in-browser information-
flow tracking to analyze JSEs. SABRE associates a label
with each in-memory JavaScript object in the browser,
which determines whether the object contains sensitive
information. Sabre propagates labels as objects are
modified by the JSE and passed between browser
subsystems. Sabre raises an alert if an object containing
sensitive information is accessed in an unsafe way, e.g.,
if a JSE attempts to send the object over the network or
write it to a file. We implemented Sabre by modifying
the Firefox browser and evaluated it using both
malicious JSEs as well as benign ones that contained
exploitable vulnerabilities. Our experiments show that
Sabre can precisely identify potential information flow
violations by JSEs.

Keywords: Sabre, Java Script, JSE, Browser, Window,
HTML, Extension

1. INTRODUCTION

Modern web browsers support an architecture that
lets third-party extensions enhance the core
functionality of the browser. Such extensions enhance
the look and feel of the browser and help render rich
web content, such as multimedia. Extensions are
widely available for commodity browsers as plug-in
(e.g., PDF readers, Flash players, ActiveX), browser

helper objects (BHOs) and add-ons. This paper
concerns JavaScript-based browser extensions (JSEs).
Such extensions are written primarily in JavaScript,
and are widely available and immensely popular (as
“add-ons”) for Firefox [4] and related tools, such as
Thunderbird. Notable examples of JSEs for Firefox
include Grease monkey [5], which allows user-defined
scripts to customize how web pages are rendered,
Firebug [3], a JavaScript development environment,
and No Script [8], a JSE that aims to improve security
by blocking script execution from certain websites.
Other browsers like Internet Explorer and Google
Chrome also support extensions (e.g., scriptable plug-
in and ActiveX controls) that contain or interact with
JavaScript code. However, recent attacks show that
JSEs pose a threat to browser security. Two factors
contribute to this threat:
(1) Inadequate sandboxing of JavaScript in a JSE.
Unlike JavaScript code in a web application, which
executes with restricted privileges [9], JavaScript code
in a JSE executes with the privileges of the browser.
JSEs are not constrained by the same-origin policy
[38], and can freely access sensitive entities, such as
the cookie store and browsing history. For instance,
JavaScript in a JSE is allowed to send an
XMLHttpRequest to any web domain. Even though
JavaScript only provides restricted language-level
constructs for I/O, browsers typically provide cross-
domain interfaces that enable a JSE to perform I/O.
For example, although JavaScript does not have
language-level primitives to interact with the file
system, JSEs in Firefox can access the file system via
constructs provided by the XPCOM (cross-domain
component object model) interface [7]. Importantly,
these features are necessary to create expressive JSEs
that support a rich set of functionalities. For example,
JSEs that provide cookie/password management
functionality rely critically on the ability to access the
cookie/password stores. However, JSEs from
untrusted third parties may contain malicious
functionality that exploits the privileges that the
browser affords to JavaScript code in an extension.
Examples of such JSEs exist in the wild. They are

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 12 | Dec -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 69

extremely easy to create and can avoid detection
using stealth techniques [11, 13, 14, 15, 18, 41].
Indeed, we wrote several such JSEs during the course
of this research work.

 (2) Browser and JSE vulnerabilities. Even if a JSE is
not malicious, vulnerabilities in the browser and in
JSEs may allow a malicious website to access and
misuse the privileges of a JSE [12, 35, 39, 40, 45].
Vulnerabilities in older versions of Firefox/Grease
monkey allowed a remote attacker to access the file
system on the host machine [35, 45]. Similarly,
vulnerabilities in Firebug [12, 39] allowed remote
attackers to execute arbitrary commands on the host
machine using exploits akin to cross-site scripting.
These attacks exploit subtle interactions between the
browser and JSEs. While there is much prior work on
the security of untrusted browser extensions such as
plug-in and BHOs (which are distributed as binary
executables) particularly in the context of spyware
[22, 30, 31], there is relatively little work on analyzing
the security of JSEs. Existing techniques to protect
against an untrusted JSE rely on load time verification
of the integrity of the JSE, e.g., by ensuring that scripts
are digitally signed by a trustworthy source.

To summarize, the main contributions of this paper
are:
• Sabre, an information flow tracker for JSEs. Sabre
handles explicit information flows, some forms of
implicit flows, as well as cross-domain flows. We have
implemented a prototype of Sabre in Firefox.
• Evaluation on 24 JSEs. We evaluated Sabre using
malicious JSEs as well as benign ones that contained
exploitable vulnerabilities. In these cases, Sabre
precisely identified information flow violations. We
also tested Sabre using benign JSEs. In these
experiments, Sabre precisely identified potentially
suspicious flows that we manually analyzed and white
listed. We chose Firefox as our implementation and
evaluation Platform because of the popularity and
wide availability of JSEs for Firefox. The techniques
described in this paper are therefore relevant and
applicable to such browsers as well.

2 BACKGROUND AND MOTIVATING EXAMPLES

 Writing browser extensions in JavaScript offers a
number of advantages that will ensure that JSEs
remain relevant in future browsers as well. JavaScript
has emerged as the lingua franca of the Web and is
supported by all major browsers. It offers several

primitives that are ideally suited for web browsing
(e.g., handlers for user-generated events, such as
mouse clicks and keystrokes) and allow easy
interaction with web applications (e.g., primitives to
access the DOM). The problem is exacerbated by the
lack of good environments and tools, such as static
bug finders, for code development in JavaScript.
Moreover, because subtle bugs only manifest when a
JSE is used with certain versions of the browser,
comprehensive testing of JSEs for security
vulnerabilities is
 <script type="text/javascript">
 window._GM_xmlhttpRequest = null;
 function trapGM(...) {
 window._GM_xmlhttpRequest=
window.GM_xmlhttpRequest;

 }
 function checkGM() {
 if (window._GM_xmlhttpRequest) {
 window._GM_xmlhttpRequest(
 {method: ‘GET’, url: ‘file:///c:/boot.ini’,
 onload: function(Response) {
 document.formname.textfield.value=
Response.responseText;
 }});
 }
 }
 if (typeof window.addEventListener != ‘undefined’)
{
 window.watch(‘GM_apis’, trapGM);
 window.addEventListener(‘load’, checkGM, true);
 }
 </script>
Figure 1. Example of malicious JavaScrip code that exploits the
Greasemon key vulnerability to read the contents of boot.ini
from disk

The remainder of this section presents motivating
examples that demonstrate how JSEs can compromise
confidentiality and integrity. The first example shows
how a remote attacker can exploit vulnerabilities in
an otherwise benign JSE, while the second example
presents a malicious JSE. In each case, we also
describe how information-flow tracking, as
implemented in Sabre, would have discovered the
attack.

2.1 Grease monkey/Firefox Vulnerability

Grease monkey is a popular JSE that allows user-
defined scripts to make changes to web pages on the

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 12 | Dec -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 70

fly. For example, a user could register a script with
Grease monkey that would customize the background
of web pages that he visits. Grease monkey exports a
set of APIs (prefixed with “GM”) those user-defined
scripts can be programmed against. These APIs
execute with elevated privileges because user-defined
scripts must have the ability to read and modify
arbitrary web pages. For example, the GM xml http
Request API allows a user-defined script to execute an
XMLHttpRequest to an arbitrary web domain, and is
not constrained by the same-origin policy. Although
the script simply modifies the DOM to store the
contents of the boot.ini file, it could instead use a
POST to transmit this data over the network to a
remote attacker. Information-flow tracking as
implemented in Sabre detects this attack because
sensitive user data (boot.ini) is accessed in unsafe
ways. In particular, Sabre marks as sensitive all data
that a JSE reads from a pre-defined set of sensitive
sources, including the local file system.

function do_sniff() {
var hesla =
window.content.document.getElementsByTagName("i
nput");
data = "";
for (var i = 0; i < hesla.length; i++) {
if (hesla[i].value != "") {
...
data += hesla[i].type + ":" + hesla[i].name
+ ":" + hesla[i].value + "\n";
...
}
}
// the rest of the code sends ‘data’ via an email
message.
}
Figure 2. A snippet of code from FFsniFF, a malicious JSE.

JavaScript code from Grease monkey to access the
local file system consequently and response. Response
Text, which this function returns, is also marked
sensitive. Sabre raises an alert when the browser
attempts to send contents of the DOM over the
network, e.g., when the user clicks a “submit” button.
This example illustrates how a malicious website can
exploit JSE/browser vulnerabilities to steal
confidential user data. It also illustrates the need to
precisely track security labels across browser
subsystems. For instance, Sabre detects the above
attack because it also modifies the browser’s DOM
subsystem to store labels with DOM nodes. Doing so

allows Sabre to determine whether a sensitive DOM
node is transmitted over the network. An approach
that only tracks security labels associated with
JavaScript objects (e.g., [16, 42]) will be unable to
precisely detect this attack.

2.2 A Malicious JSE

FFsniFF (Firefox Sniffer) [13] is a malicious JSE that, if
installed, attempts to steal user data entered on HTML
forms. When a user “submits” an HTML form, FFsniFF
iterates through all non-empty input fields in the
form, including password entries, and saves their
values. It then constructs SMTP commands and
transmits the saved form entries to the attacker (the
attack requires the vulnerable host to run an SMTP
server). FFsniFF also attempts to hide itself from the
user by exploiting vulnerability in the Firefox
extension manager (CVE-2006-6585) to delete its
entry from the add-ons list presented by Firefox.
Sabre detects FFsniFF because it considers all data
received from form fields on a web page as sensitive.
This sensitive data is propagated to both the array
hesla and the variable data via a series of assignment
statements. Sabre raises an alert when FFsniFF
attempts to send the contents of the sensitive data
variable along with SMTP Commands over an output
channel (a low-sensitivity sink) to the SMTP server
running on the host machine.

2.3 Tracking Information Flow with Sabre had

three goals:

(1) Monitor all JavaScript execution. Sabre must
monitor all JavaScript code executed by the browser.
This includes code in web applications, JSEs, as well as
JavaScript code executed by the browser core, e.g.,
code in browser menus and XUL elements [10].

(2) Ease action attribution. When Sabre reports an
information flow violation by a JSE, an analyst may
need to determine whether the violation is because of
an attack or whether the offending flow is part of the
advertised behavior of the JSE. In the latter case, the
analyst must white list the flow.

(3) Track information flow across browser
subsystems JavaScript code. In a browser and its
JSEs interacts heavily with other subsystems, such as
the DOM and persistent storage, including cookies,
saved passwords, and even the local file system. Sabre
must precisely monitor information flows across
these subsystems because attacks enabled by JSEs

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 12 | Dec -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 71

often involve multiple browser subsystems. We
implemented Sabre by modifying Spider Monkey, the
JavaScript interpreter in Firefox, to track information
flow. We modified Spider Monkey’s representation of
JavaScript objects to include security labels. We also
enhanced the interpretation of JavaScript byte code
instructions to modify labels, thereby propagating
information flow. We also modified other browser
subsystems, including the DOM subsystem (e.g.,
HTML, XUL and SVG elements) and XPCOM, to store
and propagate security labels, thereby allowing
information flow tracking across browser subsystems.
This approach allows us to satisfy our design goals. All
JavaScript code is executed by the interpreter, thereby
ensuring complete mediation even in the face of
browser vulnerabilities. Moreover, associating
security labels directly with JavaScript objects and
tracking these labels within the interpreter and other
browser subsystems makes our approach robust to
obfuscated JavaScript code, e.g., as may be found in
drive-by-download websites that attempt to exploit
browser and JSE vulnerabilities. Finally, the
interpreter can readily identify the source of the
JavaScript byte code currently being interpreted,
thereby allowing for easy action attribution. Although
Sabre’s approach of using browser modifications to
ensure JSE security is not as readily portable as, say,
language restrictions [1, 2, 33], this approach also
ensures compatibility with legacy JSEs.

3. SECURITY

3.1. Security Labels
Sabre associates each in-memory JavaScript object
with a pair of security labels. One label tracks the flow
of sensitive information while the second tracks the
flow of low-integrity information (to detect,
respectively, violations of confidentiality and
integrity). We restrict our discussion to tracking flows
of sensitive information because confidentiality and
integrity are largely symmetric. Each security label
stores three pieces of information:
(i) A sensitivity level, which determines whether the
object associated with the label stores sensitive
information;
(ii) A Boolean flag, which determines whether the
object was modified by JavaScript code in a JSE; and
 (iii) The name(s) of the JSE(s) and web domains that
have modified the object.

The sensitivity level is used to determine possible
information flow violations, e.g., if data derived from a

sensitive source is written to a low-sensitivity sink.
However, Sabre raises an alert only if the object was
modified by a JSE. In this case, Sabre reports the
name(s) of the JSE(s) that have modified the object.
The DOM node that stores the response from the GM
xml http Request call is marked sensitive. Further, the
data contained in the node is modified by executing
code contained in Grease monkey, via the return value
from GM xml http Request. Consequently, Sabre raises
an alert when the browser attempts to transmit the
DOM node via HTTP, e.g., when the user submits a
form containing this node. Sabre’s policy of raising an
alert only when an object is modified by a JSE is key to
avoiding false positives. Recall that Sabre tracks the
execution of all JavaScript code, including code in web
applications and in the browser core. Although such
tracking is necessary to detect attacks via
compromised/malicious files in the browser core, e.g.,
overlays from malicious JSEs, it can also report
confidentiality violations when sensitive data is
accessed in legal ways, such as when JavaScript in a
web application accesses cookies. Such accesses are
sandboxed using other mechanisms, e.g., the same-
origin policy. We therefore restrict Sabre to report an
information-flow violation only when a sensitive
object modified by JavaScript code in a JSE (or overlay
code derived from JSEs) is written to a low-sensitivity
sink. Security labels in Sabre allow for fine-grained
information flow tracking. Sabre associates a security
label with each JavaScript object, including objects of
base type (e.g., int, bool), as well as with complex
objects such as arrays and compound objects with
properties.

A JavaScript object inherits all the properties of its
ancestor prototypes. Therefore an object’s properties
may not directly be associated with the object itself.
For example, an object obj may access a property
obj.prop, which in turn may result in a chain of
lookups to locate the property prop in an ancestor
prototype of obj. In this case, the sensitivity level of
obj.prop is the sensitivity of the value stored in prop.
Sabre stores the label of the property prop with the
in-memory representation of prop. Its label can
therefore be accessed conveniently, even if an access
to prop involves a chain of multiple prototype lookups
to locate the property. Moreover, objects in JavaScript
are passed by reference. Therefore, any operations
that modify the object via a reference to it, such as
those in a function to which the object is passed as a
parameter, will also modify its label appropriately
when the interpreter accesses the in-memory

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 12 | Dec -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 72

representation of that object. JavaScript in a browser
closely interacts with several browser subsystems.
Notably, the browser provides the document and
window interfaces via which JavaScript code can
interact with the DOM, e.g., a JSE can access and
modify window Location. However, such browser
objects are not stored and managed by the JavaScript
interpreter. Rather, each access to a browser object
results in a cross domain call that gets/sets the value
of the browser object. To store security labels for such
objects, Sabre also modifies the browser’s DOM
subsystem to store security labels. Each DOM node
has an associated security label. This label is accessed
and transmitted by the browser to the JavaScript
interpreter when the DOM node is accessed in a JSE.
In addition to the DOM, cross-domain interfaces such
as XPCOM allow a JSE to interact with other browser
subsystems, such as storage and networking. For
example, the following

snippet uses XPCOM’s cookie manager.
Var cookieMgr
=Components.classes["@mozilla.org/cookiemana
ger;1"].
getService
(Components.interfaces.nsICookieManager);
var e = cookieMgr.enumerator;

In this case, the reference to enumerator is resolved
via a cross-domain call to the cookie manager. Sabre
must separately manage the security labels of
cookieMgr and those of its properties because
cookieMgr is not a JavaScript object. Sabre assigns a
default security label to cross-domain objects. It also
ensures that properties that are resolved via cross-
domain calls inherit the labels of their parent objects,
e.g., cookieMgr. Enumerator inherits the label of
cookieMgr.

3.2. Sources and Sinks

Sabre detects flows from sensitive sources to low
sensitivity sinks. We consider several sensitive
sources which primarily deal with access to DOM
elements, as well as sources enabled by cross-domain
access including those that allow access to persistent
storage. Any data received over these interfaces is
considered sensitive. Low-sensitivity sinks accessible
from the JavaScript interpreter include the file system
and the network. In addition to modifying the
JavaScript interpreter to raise an alert when a
sensitive object is written to a low sensitivity sink,

Sabre also modifies the browser’s document interface
to raise an alert when a DOM node that stores
sensitive data derived from a JSE is sent over the
network. For example, Sabre raises an alert when a
form or a script element that contains sensitive data
(i.e., data derived from the cookie or password store)
is transmitted over the network. The browser itself
may perform several operations that result in
information flows from sensitive sources to low
sensitivity sinks. For example, the file system is listed
both as a sensitive source and a low-sensitivity sink.
This is because a JSE may potentially leak confidential
data from a web application by storing this data on
the file system, which may then be accessed by other
JSEs or malware on the host machine.

3.3. Propagating Labels

Sabre modifies the interpreter to additionally
propagate security labels. JavaScript instructions can
roughly be categorized into assignments, function
calls and control structures, such as conditionals and
loops. Explicit flows. Sabre handles assignments in the
standard way by propagating the label of the RHS of
an assignment to its LHS. If the RHS is a complex
arithmetic/logic operation, the result is considered
sensitive if any of the arguments is sensitive.
Assignments to complex objects deserve special care
because JavaScript supports dynamic creation of new
object properties. For example, the assignment
obj.prop= 0 adds a new integer property prop to obj if
it does not already exist. Recall that Sabre associates a
separate label with obj and obj.prop. In this case, the
property prop inherits the label of obj when it is
initially created, but the label may change because of
further assignments to prop. An aggregate operation
on the entire object (e.g., a length operation on an
array) will use the label of the object. In this case, the
label of the object is calculated (lazily, when the object
is used) to be the aggregate of the labels of its child
properties, i.e., an object is considered sensitive if any
of its constituent properties stores sensitive
information. In particular, there is a control
dependency between a conditional expression and the
statements executed within the conditional. Thus, for
instance, all statements in both the T and F blocks in
the following statement must be considered sensitive,
because document Cookie. Length is a considered
sensitive:
if (document.cookie.length > 0) then {T} else {F} Sabre
handles implicit flows using labeled scopes. Each
conditional induces a scope for both its true and false

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 12 | Dec -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 73

branches. The scope of each branch inherits the label
of its conditional; scopes also nest in the natural way.
All objects modified within each branch inherit the
label of the scope in which they are executed.

x = false; y = false;
If (document.cookie.length > 0)
Then {x = true} else {y = true}
If (x == false) {A}; if (y == false) {B}

Figure 3. An implicit flow that cannot be detected using labeled
scopes

While scopes handle a limited class of implicit
information flows, it is well-known that they cannot
prevent all implicit flows. There is an implicit
information flow from document.cookie.length to both
x and y. However, a dynamic approach that uses
scopes will only mark one of x or y as sensitive,
thereby missing the implicit flow. Precisely detecting
such implicit flows requires static analysis. However,
we are not aware of static analysis techniques for
JavaScript that can detect all such instances of implicit
flow. Our current prototype of Sabre therefore cannot
precisely detect all instances of implicit flows. In
future work, we plan to investigate a hybrid approach
that alternates static and dynamic analysis to soundly
detect all instances of implicit flows. In addition to
propagating sensitivity values, Sabre uses the
provenance of each Java Scrip instruction to
determine whether a JavaScript object is modified by
a JSE.

3.4. Declassifying and Endorsing Flows

JSE can contain information flows that may potentially
be classified as violations of confidentiality or
integrity. For example, consider the Pwd Hash [37]
JSE, which customizes passwords to prevent phishing
attacks. This JSE reads and modifies a sensitive
resource (i.e., a password) from a web form, which is
then transmitted over the network when the user
submits the web form. Sabre raises an alert because
an untrusted JSE can use a similar technique to
transmit passwords to a remote attacker. However,
Pwd Hash customizes an input password passwd to a
domain by converting it into SHA1 (passwd||domain),
which is then written back to a DOM element whose
origin is domain. In doing so, Pwd-Hash effectively
declassifies the sensitive password. Consequently, this
information flow can be white listed by Sabre. To
support declassification of sensitive information,
Sabre extends the JavaScript interpreter with the

ability to declassify flows. A security analyst supplies
a declassification policy, which specifies how the
browser must declassify a sensitive object. Flows that
violate integrity can similarly be handled with an
endorsement policy. Sabre supports two kinds of
declassification (and endorsement) policies: sink-
specific and JSE-specific. A sink-specific policy permits
fine-grained declassification of objects by allowing an
analyst to specify the location of a byte code
instruction and the object externalized by that
instruction. In turn, the browser reduces the
sensitivity of the object when that instruction is
executed. For example, the security analyst would
specify the file, function and line number at which to
execute the declassification byte code on the object
being externalized. In case of Pwd Hash, the policy
would be the tuple <stanford-pwdhash.js, finish, 330,
field. value>. In contrast, a JSE-specific policy permits
declassification of all flows from a JSE and can be used
when a JSE is trusted. Declassification (and
endorsement) policies must be supplied with care
because declassification causes Sabre to allow
potentially unsafe flows.

4. EVALUATION & PERFORMANCE

We evaluated Sabre using a suite of 24 JSEs,
comprising over 120K lines of JavaScript code. Our
goals were to Test both the effectiveness of Sabre at
analyzing information flows and to evaluate its
runtime overhead.

4.1. Effectiveness
Our test suite included both JSEs with known
instances of malicious flows as well as those with
unknown flows. In the latter case, we used Sabre to
understand the flows and determine whether they
were potentially malicious.

4.1.1 JSEs with known malicious flows

We evaluated Sabre with four JSEs that had known
instances of malicious flows. These included two JSEs
that contained exploitable vulnerabilities (Grease
monkey v0.3.3 and Firebug v1.01) and two publicly-
available malicious JSEs (FFSniFF [13] and Browser
Spy). To test vulnerable JSEs, we adapted information
available in public fora [12] to write web pages
containing malicious scripts. The exploit against
Grease monkey attempted to transmit the contents of
a file on the host to an attacker, thereby violating
confidentiality, while exploits against Firebug

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 12 | Dec -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 74

attempted to start a process on the host and modify
the contents of a file on disk, thereby violating
integrity. In each case, Sabre precisely identified the
information flow violation. We also confirmed that
Sabre did not raise an alert when we used a JSE-
enhanced browser to visit Benign web pages. To test
malicious JSEs, we considered FFSniFF and Browser
Spy, both of which exhibit the same behavior—they
steal passwords and other sensitive entries from web
forms and hide their presence from the user by
removing themselves from the browser’s extension
manager. Nevertheless, because Sabre records the
provenance of each JavaScript byte code instruction
executed, it raised an alert when FFSniFF and
Browser Spy attempted to transmit passwords to a
remote attacker via the network. In addition to the
above JSEs, we also wrote a number of malicious JSEs,
both to demonstrate the ease with which malicious
JSEs can be written and to evaluate Sabre’s ability to
detect them. Each of our JSEs comprised fewer than
100 lines of JavaScript code, and was written by an
undergraduate student with only a rudimentary
knowledge of JavaScript.

4.2. Performance

We evaluated the performance of Sabre by integrating
it with Spider Monkey in Firefox 2.0.0.9. Our test
platform was a 2.33 GHz Intel Core2 Duo machine
running Ubuntu 7.10 with 3GB RAM. We used the Sun
Spider and V8 JavaScript benchmark suites to
evaluate the performance of Sabre. Our
measurements were averaged over ten runs. With the
V8 suite, a Sabre-enabled browser reported a mean
score of 29.16 versus 97.91 for an unmodified
browser, an overhead of 2.36×, while with Sun Spider;
a Sabre-enabled browser had an overhead of 6.1×. We
found that the higher overhead in Sun Spider was
because of three benchmarks (3d-morph, access-
nsieve and bitops-nsievebits). Discounting these three
benchmarks, Sabre’s overhead with Sun Spider was
1.6×. Despite these overheads, the performance of the
browser was not noticeably slower during normal
web browsing, even with JavaScript-heavy web pages,
such as Google maps and street views. The main
reason for the high runtime overhead reported above
is that Sabre monitors the provenance of each
JavaScript byte code instruction to determine whether
the instruction is from a JSE. Monitoring each
instruction is important, primarily because code
included in overlays (distributed with JSEs) is
included in the browser core and may be executed at

any time. If such overlays can separately be verified to
be benign, these checks can be disabled. In particular,
when we disabled this check, we observed a
manageable overhead of 77% and 42% with the V8
and Sun Spider suites, respectively. Ongoing efforts by
Eichet al. [23, 24] to track information flow in
JavaScript also incur comparable (20%-70%)
overheads.

4. CONCLUSION

This research review presented Sabre, an in-browser
information flow tracker that can detect
confidentiality and integrity violations in JSEs,
enabled either because of malicious functionality in
JSEs or because of exploitable vulnerabilities in the
code of a JSE. In future work, we plan to improve the
performance of Sabre by exploring static analysis of
JavaScript code. For example, static analysis can be
used to create summaries of fragments of JavaScript
code that do not contain complex constructs (e.g.,
eval). These summaries record how the labels of
objects accessed by the fragments are modified. Sabre
can use these summaries to update labels when the
Fragment is executed, thereby avoiding the need to
propagate security labels for each byte code
instruction.

REFERENCES

 [1] T. Austin and C. Flanagan. Efficient purely-dynamic
information flowanalysis. In ACM PLAS, June 2009.

[2] P. Beaucamps and D. Reynaud. Malicious Firefox
extensions. In Symp. Sur La Securite Des Technologies De
L’Information Et Des Communications, June 2008

[3] L. Cavallaro, P. Saxena, and R. Sekar. On the limits of
information flow techniques for malware analysis and
containment. In DIMVA,July 2008.

[4] R. Chugh, J. Meister, R. Jhala, and S. Lerner. Staged
information flow for JavaScript. In PLDI, June 2009.

[5] M. Dhawan and V. Ganapathy. Analyzing information
flow in JavaScript-based browser extensions. Technical
Report DCS-TR-648, Rutgers University, April 2009.

[6] M. Egele, C. Kruegel, E. Kirda, H. Yin, and D. Song.
Dynamic spyware analysis. In USENIX Annual Technical,
June 2007.

[7] B. Eich. Better security for JavaScript, March 2009.
Dagstuhl Seminar 09141: Web Application Security.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 12 | Dec -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 75

[8] B. Eich. JavaScript security: Let’s fix it, May 2009. Web
2.0 Security and Privacy Workshop.

[9] U. Erlingsson, Y. Xie, and B. Livshits. End-to-end web
application security. In HotOS, May 2007.

[10] B. Yee et al.. Native client: A sandbox for portable,
untrusted x86 native code. In IEEE S&P, May 2009.

[11] C. Grier, S. Tang, and S. T. King. Secure web browsing
with the OP web browser. In IEEE S&P, May 2008.

[12] A. Guha, S. Krishnamurthi, and T. Jim. Using static
analysis for Ajax intrusion detection. In WWW, April 2009.

[13] O. Hallaraker and G. Vigna. Detecting malicious
JavaScript code in Mozilla. In 10th IEEE Conf. on
Engineering Complex Computer Systems, June 2005.

[14] E. Kirda, C. Kruegel, G. Banks, G. Vigna, and R.
Kemmerer. Behavior-based spyware detection. In USENIX
Security, August 2006.

[15] Z. Li, X. Wang, and J. Y. Choi. SpyShield: Preserving
privacy from spy add-ons. In RAID, September 2007.

[16] B. Livshits and S. Guarnieri. Gatekeeper: Mostly static
enforcement of security and reliability policies for
JavaScript code. Technical Report MSR-TR-2009-16,
Microsoft Research, 2009.

[17] M. S. Miller, M. Samuel, B. Laurie, I. Awad, and M. Stay.
Caja: Safe active content in sanitized JavaScript, June 2008.

[18] P. H. Phung, D. Sands, and A. Chudnov. Lightweight
self-protecting JavaScript. In ASIACCS, March 2009.

[19] M. Pilgrim. Greasemonkey for secure data over
insecure networks/sites, July 2005.
http://mozdev.org/pipermail/ greasemonkey/2005-
July/003994.html.

[20] C. Reis, J. Dunagan, H. J. Wang, O. Dubrovsky, and S.
Esmeir. Browsershield: Vulnerability-driven filtering of
dynamic HTML. In ACM/USENIX OSDI, November 2006.

[21] B. Ross, C. Jackson, N. Miyake, D. Boneh, and J. C.
Mitchell. Stronger password authentication using browser
extensions. In USENIX Security, August 2005.

[22] J. Ruderman. The same-origin policy, August 2001.
http://www.mozilla.org/projects/security/components/sa
me-origin.html.

[23] Secunia Advisory SA24743/CVE-2007-1878/CVE-
2007-1947.Mozilla Firefox Firebug extension two cross-
context scripting vulnerabilities.

[24] Secunia Advisory SA30284. FireFTP extension for
Firefox directory traversal vulnerability.

[25] M. Ter-Louw, J. S. Lim, and V. N. Venkatakrishnan.
Enhancing web browser security against malware
extensions. Journal of Computer Virology, 4(3), August
2008.

[26] P. Vogt, F. Nentwich, N. Jovanovic, E. Kirda, C. Kruegel,
and G. Vigna. Cross site scripting prevention with dynamic
data tainting and static analysis. In NDSS, February 2007.

[27] D. Wagner and P. Soto. Mimicry attacks on host-based
intrusion detection systems. In ACM CCS, November 2002.

[28] H. J. Wang, C. Grier, A. Moshchuk, S. T. King, P.
Choudhury, and H. Venter. The multi-principal OS
construction of the Gazelle web browser. Technical Report
MSR-TR-2009-16, Microsoft Research, February 2009.

[29] S. Willison. Understanding the Greasemonkey
vulnerability, July 2005.
http://simonwillison.net/2005/Jul/20/vulnerability.

[30] A. Yip, N. Narula, M. Krohn, and R. Morris. Privacy-
preserving browser-side scripting with bflow. In EuroSys,
April 2009.

[31] D. Yu, A. Chander, N. Islam, and I. Serikov. JavaScript
instrumentation for browser security. In ACM POPL,
January 2007.

http://www.mozilla.org/projects/security/components/same-origin.html
http://www.mozilla.org/projects/security/components/same-origin.html
http://simonwillison.net/2005/Jul/20/vulnerability

