www.irjet.net

e-ISSN: 2395 -0056 p-ISSN: 2395-0072

Solving Combined Economic Emission Dispatch Solution Using Jaya **Optimization Algorithm Approach**

Sudhir Phulambrikar

Associate Professor, Department of Electrical Engineering S.A.T.I. Vidisha (M.P.)

Abstract:- For large power system operation Economic Load Dispatch is one of the most important problem. Its objective how to schedule generation at various inter connected generating plants, to meet required load demand, considering system constraints to keep operating cost at minimum level. In combined economic emission dispatch (ceed) not only minimize the operating but simultaneously keep emission level low also. There are various technique, proposed by several researchers to solve ceed problem. In this paper Java, Particle Swarm Optimization and Bare-Born Particle Swarm Optimization and Differential Evolutionary algorithms are applied to minimize operating cost with minimization of emission too. Generation for various units and Power loss is calculated using Newton-Raphson power flow method on IEEE-6 and IEEE-14 bus test data.

Key Words:- Combined Economic Emission Dispatch, Particle Swarm Optimization, Bare-Bone PSO, Jaya **Optimization Algorithm**

I. Nomenclature:-

Fi(Pi)	Fuel cost function of i th generator
P_{i}	Real power generation of i th generator
$P_i{}^{min} \\$	Minimum limit of real power generation
P_i^{max}	Maximum limit of real power generation
P_D	Total real power demand
P_L , Q_L	Real and reactive power losses of the system
NG	Number of generator
E_{i}	Total Emission from generators
a_i , b_i , c_i	Cost coefficient of i th generator
d_i , e_i , f_i	NO_x emission coefficients of i^{th} generator
h	Price penalty factor
Pbest	Particle best position

Volume: 03 Issue: 11 | Nov -2016 www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

Gbest Globle best position of particle

 $\mu^{k_{i,j}}$ mean of pbest and gbest in jth decision variable of ith particle at kth iteration

 $\sigma^{k}_{i,j}$ absolute difference phest and ghest in jth decision variable of ith particle at kth iteration

N represents gaussian distribution

2. Introduction: Generating stations are interconnected to achieve benefits of better operating conditions, flexibility with better reliability of system. By economic load dispatch minimum production cost can be achieve. As per government regulations on environment protection, the conventional operation at absolute minimum fuel cost, cannot be the only basis of dispatching electric power. There is expectation from society for adequate and secure electricity at minimum possible price with minimum levels of pollution, produced by fossil-fuelled electric power plants. The clean Air Act Amendments instruct to reduce NO_x and SO₂ emission also be minimum from such power plants. The single objective can no longer be considered alone. So Environmental Economic dispatch is a multi-objective problem. Well known long established techniques such as integer programming, dynamic programming and legarangian relaxation method[1-2] have been used to solve economic load dispatch problem. Nanda et al. solved economic-emission problem using goal programming technique for a system having six generator[3]. Nanda et al. also applied classical technique based on coordinated equation to obtain economic emission load dispatch for IEEE14 and 30 bus system[4]. Dhillon et al. [5] applied weighted minimax technique and fuzzy set theory to find out solution. Recently other optimization method such as Genetic algorithm[7], Artificial Bee Colony Optimization[8], Modified Ant Colony Optimization[9] are applied for ceed solution,. Swarm intelligence algorithms [12 -16] is also applied by researchers. Niched parato genetic algorithm is also reported for optimum solution for ceed problem.

In this paper NO_x contains are minimized by applying Particle Swarm Optimization (PSO) and Bare-Bones Particle Swarm Optimization (BBPSO), Differential Evolutionary (DE), Jaya Algorithm and their results are compared for various load demand. A price penalty factor (h) [8,11], is used in the objective function to combine the fuel cost and emission function.

3. Problem Formulation:

The mathematical formulation of the total fuel cost function as follows

$$Min j = \sum_{i=1}^{NG} Fi(Pi)$$
 (1)

Where F_i is the total fuel cost for the generator (in Rs/Hr). Generally the fuel cost of thermal generating unit is represented by polynomial function

 $a_i\,$, $b_{i,}$, c_i are cost coefficient of generator i

www.irjet.net

e-ISSN: 2395 -0056 p-ISSN: 2395-0072

The combined economic and emission dispatch problem can be formulated as to minimize

Min f =
$$\sum_{i=1}^{NG} \text{Fi(Pi)} + h \sum_{i=1}^{NG} \text{Ei(Pi)}(2)$$

where

$$F_i(P_i) = a_i p_i^2 + b_i p_i + c_i(3)$$

andai, bi, ci are cost coefficient of generator i

Volume: 03 Issue: 11 | Nov -2016

$$E_i(P_i) = d_i p_i^2 + e_i p_i + f_{ii}(4)$$

Where d_i , e_i , f_i are NO_x emission coefficient and h is price penalty factor.

Constraints of the system:-.

Inequality constraint:- Generation of power of each generator should be within limit of their maximum and minimum limits. The inequality constraint for each generator

$$P_i^{\min} \le P_i \le P_i^{\max} \tag{5}$$

Cost coefficients and emission coefficients are given for generators units are in use while penalty factor 'h' is to be evaluate. A practical way of evaluating h is discussed in [9] The procedure to calculate' h is as follow.

For given load in the system P_d MW

- (1) Calculate the maximum cost of each generator at its maximum output, i.e. $F_i(P_{imax}) = (a_i P_{imax}^2 + b_i P_{imax} + b_i P_{imax}$
- (2) Calculate the maximum NO_x emission of each generator at its maximum output $E_i(P_{i max}) = (d_i P_{i max}^2) + e_i P_{i max} + f_i kg/hr$
- (3) Divide the maximum cost of each generator by its maximum NO_x emission.i.e.,

$$\frac{F_i(P_{imax})}{E_i(P_{imax})} = \frac{a_i P_{imax}^2 + b_i P_{imax} + c_i}{d_i P_{imax}^2 + e_i P_{imax} + c_i}$$
(6)

$$\frac{F_i(P_{ima\ x})}{E_i(P_{imax})} = h_i \operatorname{Rs}/\operatorname{Kg}(7)$$

After calculation of hi

(4) Arrange h_i for (i = 1,2,3n) in ascending order.

www.iriet.net

g and Technology (IRJET) e-ISSN: 2395-0056
et.net p-ISSN: 2395-0072

(5) Add the maximum capacity of each unit, ($P_{i max}$) one at a time starting from the smallest h_i unit total demand is met to satisfy

$$\sum_{i=1}^{NG} P_{imax} >= P_{D}$$

(6) At this stage, h_i associated with the last unit in the process is the price penalty factor h in Rs/kg for the given load

Arrange h_i in ascending order . $h = [h_1, h_2, \dots, h_n]$ for a load of P_D starting from the lowest h_i of maximum capacity of unit is added one by one and when this total equals or exceeds the load, h_i associated with the last unit in the process is the price penalty factor for the given P_D , then substituting the value of ' h', equation can be solved.

4. Jaya Algorithm: an overview

Volume: 03 Issue: 11 | Nov -2016

The word Jaya is taken from sanskrit its meaning is victory. Jaya algorithm is developed by R.Venkata Rao in 2015 [23]. It is algorithmic specific parameter-less optimization algorithm. It requires only common controlling parameters like population size and number of generations for its working. It can be applied for solving constrained and unconstrained optimization problems. Among the population best candidate f(x) best and worst candidate f(x) worst are obtained from entire candidate solution. Its implementation moves solution towards best solution and avoid solution moves towards worst solution. The steps of implementation of jaya algorithm is as follows

Step(a): Initialization population of size n, with m design variables

$$P = [X_1, X_2, X_3 - - - X_n]$$

$$X_i$$
 = [$X_{i1\text{,}}$ X_{i2} , $X_{i3\text{,}}$ ----- X_{im}]

Step(b): Evaluate fitness for each population

Step(c): Obtain best value (i.e.f(x) best) and worst value (i.e.f(x) worst) among the population

Step(d): Update each population as per following eqution

$$X_{j \, worst, i} \, = X_{j, k, i} \, + r \mathbf{1}_{, j, i} \big(\, X_{j, best, i} \, - \, | \, X_{j, k, i} \, | \, \big) - r \mathbf{2}_{j, i} \, \big(X_{j \, worst, i} \, - \, | \, X_{j, k, i} \, | \, \big)$$

Where $X_{j,best,i}$ is the value of variable j for the best candidate

 $X_{j\,\text{worst,i}}$ is the of the variable j for the worst candidate

 $X_{j \text{ worst,i}}$ is the updated value of $X_{j,k,i}$

 $r1_{j,i}\,, r2_{j,k}\,$ are random numbers for the $j^{th}\,$ variable during $i^{th}\,$ iteration

www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

the term "r1, $_{j,i}$ ($X_{j,best,i}$ - $|X_{j,k,i}|$) " has tendency to bring solution closer to solution while the term "r2, $_{j,i}$ ($X_{j,worst,i}$ - $|X_{j,k,i}|$) " has tendency to avoied the worst solution. $X'_{j,k,i}$ is accepted if it gives better function value. All better function values become the input for next iteration.

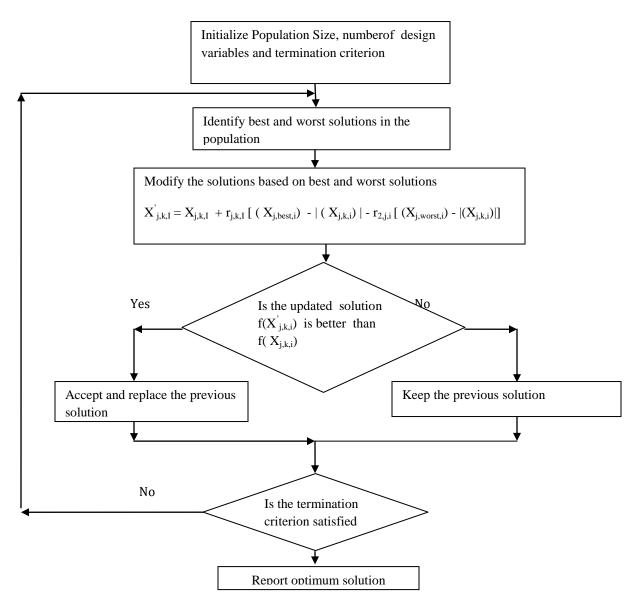


Fig 1 Flow Chart for Jaya Algorithm

5. **Results and Discussion**: The applicability and validity of PSO and BBPSO,DE, Jaya algorithm, tested on IEEE 6 Test system and IEEE 14 Test system by taking various load demands. Table No. 1. Are applied to 6- bus system consist of three generator buses and three load buses while 14 – bus system consist of five generator bus and 11 load buses.

Volume: 03 Issue: 11 | Nov -2016

www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

Table 1, (6- bus system) while Table 3, (14 bus system) shows results for fuel cost, emission, total operating cost and computational time for stated optimization algorithms. Table 2 and table 4 shows results using Jaya algorithm for min. power generated by various generating units in 6 and 14 bus system to meet required load demand keeping fuel cost, emission of NOxand total operating cost at minimum level.

Table No. 1 Comparison of Test Results for Three Generating Units, IEEE 6 Bus System

Load MW	in	h in RS/kg	Performance Parameter	PSO PSO	BBPSO	DE	JAYA
			Fuel Cost Rs/hr	6991.5	6991.5	6991.55	6991.5
125		49.4973	Emission kg/hr	140.4567	140.457	140.456	140.457
			Total Cost Rs/hr	13943.7268	13943.7	13943.7	13943.7
			Computational Time(sec)	377.25	208.109	594.05	407.02
			Fuel Cost Rs/hr	7763.1962	7763.2	7762.92	7763.2
150		59.4973	Emission kg/hr	145.8932	145.893	145.899	145.893
			Total Cost Rs/hr	14984.5136	14984.5	14984.5	14984.5
			Computational Time(sec)	388.47	183.6894	369.25	406.376
			Fuel Cost Rs/hr	8602.7411	8602.98	8602.85	8602.98
175		86.0448	Emission kg/hr	153.802	153.85	153.807	153.805
			Total Cost Rs/hr	21837.1416	21837.1	21837.1	21837.1
			Computational Time (sec)	553.2954	251.489	386.55	408.554
			Fuel Cost Rs/hr	9398.9336	9398.93	9399.06	9398.93
200		86.0448	Emission kg/hr	163.263	163.263	163.262	163.263
			Total Cost Rs/hr	23446.8033	23446.9	23446.9	23446.9
			Computational Time (sec)	354.4307	210.450	357.274	407.347

Volume: 03 Issue: 11 | Nov -2016

www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

Table No. 2 Optimum Power Dispatch Results By Jaya Optimization Algorithm For 3 Units , IEEE Six Bus System

Power	P1(MW)	P2(MW)	P3(MW)	
Demand				
125 MW	58.6394	34.885	35.778	
150 MW	66.912	44.1942	43.5112	
175 MW	77.6116	52.3504	51.6838	
200 MW	86.0307	61.5931	59.4374	

Table No. 3 Comparison of Test Result for Five Generating Units, IEEE 14 Bus System

Load MW	in	h in RS/kg	Performance Perameter	PSO	BBPSO	DE	JAYA
175		49.4973	Fuel Cost Rs/hr	9439.2639	9430.62	9438.45	9440.64
	17.1770		Emission kg/hr	224.1429	226.354	222.356	224.191
			Total Cost Rs/hr	20533.32	20634.5	20540.6	20537.5
			Computational Time in Sec.	605.9	291.074	667,921	809.27
225		56.660	Fuel Cost Rs/hr	11028.8068	11013.8	11007.2	11017.4
223		30.000	Emission kg/hr	244.2414	241.169	234.158	239.642
			Total Cost Rs/hr	24867.8311	24678.7	24585.9	24595.8
			Computational Time in Sec.	577.52	266.42	684.05	711.33
250		56.660	Fuel Cost Rs/hr	11871.1564	12659.5	11846.1	11870.9
230		30.000	Emission kg/hr	254.5335	304.3	243.393	250.184
			Total Cost Rs/hr	26293.2605	38842.9	26103.2	26046.6
			Computational Time in Sec.	531.42	271.1	869.89	796.53
		06.0440	Fuel Cost Rs/hr	12657.2009	12716.7	12644.3	12605.9
275		86.0448	Emission kg/hr	306.7821	286.861	266.973	272.404
			Total Cost Rs/hr	39054.2076	37399.6	36216.6	36044.9
			Computational Time in Sec	528.8	268	670.44	796.87

www.irjet.net

e-ISSN: 2395-0056

p-ISSN: 2395-0072

Table No. 4 Optimum Power Dispatch Results By Jaya Optimization Algorithm For 5 Units , IEEE 14 Bus System

Load	P1	P2	Р3	P4	P5
Demand					
175 MW	63.939	44.672	38.7608	10.0975	20.2947
225 MW	75.1286	61.5239	50.3842	10.0148	32.249
250 MW	85.5292	68.5136	54.4118	10.0109	38.0681
275 MW	89.4424	70	59.9632	21.6636	40

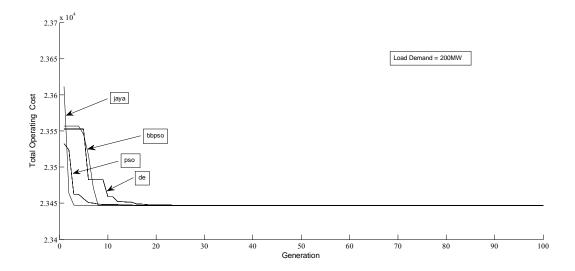


Fig. 2 Convergence of three generating units, IEEE 6 bus system

www.irjet.net

Volume: 03 Issue: 11 | Nov -2016

p-ISSN: 2395-0072

e-ISSN: 2395 -0056

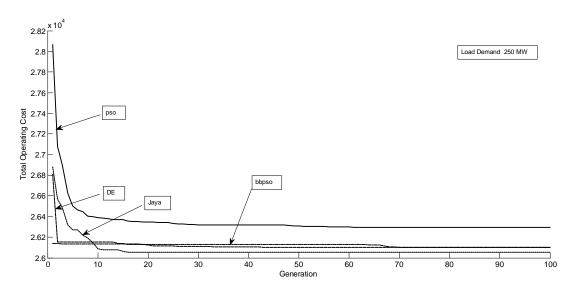


Fig.3 Convergence of five generating units, IEEE 14 bus system

6. Conclusions: -In this paper PSO and BBPSO, DE, Jaya algorithm has been applied for CEED problem, for IEEE -14 test system with five generating units. On comparing results for various load it is found that Jaya algorithm giving better results than DE,PSO,BBPSOalgorithm in total operating cost This shows the effectiveness and applicability of Jaya algorithm to achieve objective of CEED i.e. minimum fuel cost operation with minimum emission while considering constraints of the system

Appendix:-

Table No 5 Fuel Cost coefficient

Generator	Fuel Cost Coefficient			P _{Gmin}	P _{Gmx}
Unit	a_i b_i c_i				
G_1	0.0301	27.5	750	50	90
G_2	0.0195	27.3	1400	30	70
G_3	0.0203	30.0	1050	30	60
G_4	0.0507	26.5	450	10	50
G_5	0.0264	27.5	950	10	40

Table No 6Emission Coefficient (NO_x)

Generator Unit	Fue l Emi	P _{Gmin}	P_{Gmax}		
	d_i e_i f_i				
G_1	0.00419	-0.3276	35.859	50	90
G_2	0.00403	- 0.1032	56.300	30	70
G_3	0.00551	-0.2056	52.099	30	60
G_4	0.00483	0.0555	30.266	10	50
G_5	0.00600	0.0100	41.859	10	40

www.irjet.net

e-ISSN: 2395 -0056

p-ISSN: 2395-0072

VII. References

- [1] Baiyat, T.C. Cheng, Economc Load Dispatch Multiobjective Optimization Procedures Using Linear Programming Techniques, IEEE Transactions on Power Systems Vol. 10, No 2, May 1995
- [2] Hadi Saadat, Power System Analysis, Tata McGRAW-Hill New Delhi

Volume: 03 Issue: 11 | Nov -2016

- [3] J.Nanda, D.P.Kothari, K.S. Lingamurthy, Economic –emission load dispatch through goal programming, IEEE Transaction n Energy Consevation ,Vol.3,No1, 1988
- [4] J.Nanda, Lakshman Hari, M.L. Kothari, Economic emission load dispatch with line flow constraints using classical technique, IEE Proc.- Gener. Tran Distrib vol 141, No 1
- [5] j.S. Dhillon, S.C. Parti, D.P.Kothari, Stochastic economic load dispatch, Electrical Power System Research- 1993
- [6] L D Arya, S C Choube and D P Kothari Emission constrained secure economic dispatch, Electrical Power & Energy Systems Vol.19, No. 5
- [7] M Shailaja Kumari, M.Sydulu, "A Fast Computational Genetic Algorithm for Economic Load Dispatch" International Journal of Recent Trends in Engineering Vol.1, No1, May 2009
- [8] Gaurav Prasad Dixit et.al., Economic Load Dispatch Using Artifitial Bee Colony Optimization, International Journal of Advances in Electronics Engineering, pp 119-124
- [9] R Gopal Krishnan & A krishnn, An Efficient technique to solve combined economic and emission dispatch problem using Modified Ant Colony Optimization, Sadhana Vol. 38
- [10]I.F. Robert ,Ah King and Harry C.S. Rughoopath, Elitist Multiobjective Evolutionary Algorithm for Envirnmental Economic Dispatch, University of Mauritius
- [11] C.Palanichamy, K Srikrishna, Economic Thermal Power Dispatch with Emission Constraint, J.IE(India), Vol72, April,99
- [12]Leandro dos Santos Coelbo, Chu-Sheng Lee, Solving economic load dispatch problems in power systems using chaotic and Gaussian particle swarm optimization approaches, Electrical Power & Energy Systems 30(2008)
- [13]M.A. Abido, Multi objective Particle Swarm Optimization for Environmental/economic Dispatch Problem, Electrical System Research 79(2009),2009
- [14]K Satish Kumar et.al , Economic Load Dispatch with Emission Constraints Using Various PSO Algorithms ,WSEAS Transaction on Power System, Issue 9, Vol. 3,Sept 2008
- [15] Emananuel Dartey Manteaw, N.A. Odero, Combined Economic and Emission Dispatch Solution Using ABC-PSO
- [16] Jong Bae Park & Ki Song Lee, et.al, A particle Swarm Optimization for Economic Dispatch With Nonsmooth Cost Functions, IEEE Transaction On Power Systems Vol. 30 Feb 2005

International Research Journal of Engineering and Technology (IRJET)

www.irjet.net p-ISSN: 2395-0072

e-ISSN: 2395 -0056

[17] A.Amgad El-Dib et. al, Maximum Loadability of Power Systems Using Hybrid Particle Swarm Optimization, Electrical Power Systems Research 76, 2006

[18] M.A. Abido, Environmental/Economic power dispatch using multi objective evolutionary algorithms, IEEE Transaction on Power system Vol. 18, No.4,2003

[19] M.A. Abido, A niched parato genetic algorithm for multi objective environmental/economic dispatch, Electrical Power & Energy System, 2003

[20]A. Radhakrishnan, Economic Dispatch with multiple fuel options using CCF, Energy and Power Engineering 2011, 13-19

[21] Sarat Kumar Mishra, Sudhanshu Mishra A comparative study of solution of economic load dispatch problem in power system in the environmental perspective, Procedia Computer Science 48 (2015)

[22] S. K. Dash, S.K. Mohanty, Multi objective economic emission load dispatch with nonlinear fuel cost and nonlinear emission level functions for IEEE-118 bus system, Electronics and communication system, 2015

[23] R. Venkata Rao, Jaya: A simple and new optimization algorithm for solving constrained and unconstrained optimization problems, International journal of industrial computations 7(2016) 19-34

[24] Marco Dorigo et.al, Particle Swarm Optimization, Scholarpedia, 3(ii):1486,2008

[25] Jingzhrng Yau, D. Han, Improved Bare-Bones Particle Swarm Optimization with Neighborhood Search and its Application On Ship Design, Hindawi, Mathematical Problem in Engineering, Vol 2013(2013), Article ID 175848

[26] Yong Zhang, Duni-weiGong, Xiao-yansun, NanGeng, Adaptive Bare-bones Particle Swarm Optimization Algorithm and its Convergence Analysis, SoftComput(2014), 18:1337-1352

[27] Mritunjay, K Modi, et.al, Stochastic economic load dispatch with multiple fuel using improved Particle Swarm Optimization, IFSC papers, Elsvier, 2015

[28] Leandro dos Santos Coelbo, Chu-Sheng Lee, Solving economic load dispatch problems in power systems using chaotic and Gaussian partical swarm optimization approaches, Electrical Power & Energy Systems 30(2008)

[29]A.Koshti, L. D. Arya, S.C. Choube, Voltage Stability Constrained Distributed Generation Plannig using Modified Bare Bones Particle Swarm Optimization, J. Inst.Eng. India Ser B (June - August 2013)

[30]Yong Zhang, Duni-weiGong, Xiao-yansun, NanGeng, Adaptive Bare-bones Particle Swarm Optimization Algorithm and its Convergence Analysis, SoftComput(2014),18:1337-1352

[31]C Kumar, T Alwarswami, "Solution of Economic Dispatch Problem Using Differential Evolution Algorithm" International Journal of Soft Computing and Engineering Vol. 1, Issue6, January 2012

[32] N.Singh, Y.Kumar, Economic load dispatch with environmental emission using MRPSO,IEEE Xplore 2013

Volume: 03 Issue: 11 | Nov -2016

www.irjet.net

e-ISSN: 2395-0056 p-ISSN: 2395-0072

[33] S.Prabhakar Karthikeyen et.al., Compression of intelligent techniques to solve economic load dispatch problem with line flow constraints, IEEE Xplore 2009

© 2016, IRJET |