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Abstract - The problem of optimum allocation in 
multivariate double sampling design has been formulated  as  
a Multi-Objective Geometric Programming Problem (MOGPP). 
The fuzzy programming approach has described for 
converting the (MOGPP) into Single Objective Geometric 
Programming Problem (SOGPP) with the use of membership 
function. The formulated SOGPP has been solved with the help 
of LINGO Software and the dual solution is obtained. The 
optimum allocations of sample sizes are obtained with the 
help of dual solutions and primal-dual relationship theorem. 
 A numerical example is given to illustrate the procedure. 
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1. INTRODUCTION 
 
Multivariate double sampling design is used to estimate the 
unknown strata weights in stratified sampling. At first stage, 
a large simple random sample from the population with un-
stratification is drawn and sampled units from each stratum 
are recorded to estimate the unknown strata weights. A 
stratified random sample is then obtained comprising of 
simple random subsamples out of the previously selected 
units of the strata. The double sampling design was first 
introduced by Neyman (1938) in survey research. Kokan 
(1963) proposed a nonlinear-programming solution in 
multivariate surveys but did not discuss its applicability to 
double sampling. Kokan and Khan (1967) described an 
analytical solution of an allocation problem in multivariate 
surveys and also discuss its application to double sampling. 
Multivariate stratified sample survey deals with more than 
one (say p) characteristics on each unit of a stratified 
population. A stratified sample survey is used to convert the 
heterogeneous population into the homogeneous population. 
Optimum allocation is an attempt to attain specified level of 
significance at the minimum cost. The problem of optimum 
allocation in multivariate stratified sample survey was 
initially described by Neyman (1934). After that the 
successful applications of mathematical programming 
techniques in multivariate stratified sample surveys are due 
to the following authors as: Ghosh (1958), Murthy (1967), 
Cochran (1977), Jahan and Ahsan (1995), Khan et al. (1997), 
Garcia and Cortez (2006), Diaz Garcia et al. (2007), Ansari et 
al. (2011), Khan et al. (2012), Ali et al (2011), Gupta et al. 
(2013) and many others. 

Geometric programming is an important methodology for 
solving algebraic nonlinear optimization problems. One of 
the significant property of geometric programming is that a 
problem with highly nonlinear constraints can be stated 
equivalently as one with only linear constraints. This is 
because there is a strong duality theorem for geometric 
programming problems. If the primal problem is in 
posynomial form, then a global minimizing solution to that 
problem can be obtained by solving the dual maximization. 
The dual constraints are linear and linearly constrained 
programs are generally easier to solve than ones with 
nonlinear constraints. It's attractive structural properties, as 
well as its elegant theoretical basis, have led to a number of 
interesting applications and the development of numerous 
useful results. Many authors have used geometric 
programming in different situations and various fields. Some 
of them are: Duffin et al. (1967), Ahmad and Charles (1987), 
Maqbool et al. (2011), MOGPP was discussed by Ojha and 
Biswal (2010), Ojha and Das (2010), Islam, S. (2010), Bazikar 
and Saraj (2014), Dey and Roy (2014), Shafiullah et al. 
(2015), Shafiullah and Agarwal  (2016) and many others. 
 
The real-life decision-making problems of sample surveys, 
social, economic, environmental and technical areas are of 
multiple-objectives. Multi-objective programming is a 
powerful mathematical procedure and applicable in decision 
making to a wide range of problems in the government 
organizations, managements, econometrics, non-profitable 
organizations and private sector etc. A system with 
indistinguishable information can neither be formulated nor 
be solved effectively by traditional mathematics-based 
optimization techniques nor probability-based stochastic 
optimization approaches. However, fuzzy set theory and 
fuzzy programming techniques provide a useful and efficient 
tool for modeling and optimizing such systems. Zadeh (1965, 
1978) first introduced the concept of fuzzy set theory. After 
that, Bellman and Zadeh (1970) used the fuzzy set theory to 
the decision-making problem.  Gupta et al. (2014) and 
Zimmermann (1978) have described the fuzzy set theory, 
fuzzy programming, and linear programming respectively. 
Fuzzy multi-objective programming is discussed by many 
authors such as Sakawa and Yano (1989, 1994), Islam and 
Roy (2006) and many others. 
In this paper, the problem of optimum allocation in 
multivariate double sampling design has been formulated as 
a Multi-Objective Geometric Programming Problem 
(MOGPP). The fuzzy programming approach has described 
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for converting the (MOGPP) into Single Objective Geometric 
Programming Problem (SOGPP) with the use of membership 
function. The formulated SOGPP has been solved with the 
help of LINGO Software and the dual solution is obtained. 
The optimum allocations of sample sizes are obtained with 
the help of dual solutions and primal-dual relationship 
theorem. A numerical example is projected  to illustrate the 
procedure. 
 

2. FORMULATION OF THE PROBLEM 
It is assumed that double sampling involves p factors of 
interest. It is also assumed that it is not possible to keep a 
separate account of the time or cost to measure or guess 
each variate at every sampling point and then the total cost 
of double sampling is 
                                            

2211 cxcxC   

where C is the total cost of the survey, 
1c  is the cost to 

obtain one direct estimate (measurement of p factors) and  

2c  is the cost to obtain one indirect estimate (guessing the 

values of p factors), 
1x  and 

2x are the sample sizes of direct 

and indirect sampling respectively. Usually 
1c  is large in 

relation to 
2c  and fixed the cost of sampling do not enter 

into optimization problems. The sample variance function of 
the direct and indirect samples is given as: 
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The mathematical formulation of the above problem is given 
as: 
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3. GEOMETRIC PROGRAMMING APPROACH IN 
TWO-STAGE SAMPLING DESIGN 
Geometric programming always transforms the primal 
problem of minimizing a posynomial subject to posynomial 
constraints to a dual problem of maximizing a function of the 
weights on each constraint. The mathematical form of 
problem (1) can be expressed in the following way: 
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In the above equations we have noticed that the objective 
function 2(i) is non-linear and the constraints 2(ii) are linear 

and the reduced which in the standard GP (Primal) problem 
can be stated as: 
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The number of posynomial terms in the function can be 
denoted by p , the number of variables is denoted by n  and 

the exponents ij  are real constants. The objective function 

 xC  for our allocation problem that is given in 2(i) and 

2(ii) has 2,1,and  icdVd iixi ij
. 

 
The dual form of Geometric Programming problem which is 
stated in (3) can be given as:   
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Step 1:  For the Optimum value of the objective function, the 
objective function always takes the form  
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Step 2: The equations that can be used for geometric 
program for the weights are given below: 


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               (Normality condition)                 (6)                                             
and for each primal variable  

jx  given n variables and k 

terms  
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Primal-dual relationship theorem: If
*

iw0  is a maximizing 

point for dual problem (5), each minimizing points  x  for 

primal problem (3) satisfies the system of equations: 
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where L ranges over all positive integers for which 

  0*

0 iL wv . 

 
4. FUZZY GEOMETRIC PROGRAMMING 
APPROACH 
  
 The solution procedure to solve the problem (5) consists of 
the following steps: 
Step-1: Solve the MOGPP as a single objective problem using 
only one objective at a time and ignoring the others. These 
solutions are known as the ideal solution. 
Step-2: From the results of step-1, determine the 

corresponding values for every objective at each solution 
derived. With the values of all objectives at each ideal 

solution, pay-off matrix can be formulated where the 

diagonal solutions are the best solutions and the off-diagonal 

solutions are the worst. 
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solutions of the objective functions 

)(,),(,,)(),( )(
0

)(
0

)2(
02

)1(
01

p
p

j
j xfxfxfxf  . 

So  )(,,)(),( )(
0

)2(
02

)1(
01

p
pj xfxfxfMaxU   

and pjxfL j
j j

,...,2,1),( )(*

0
 . 

  













 .,..,2,1,functionobjectivethe

ofbondslowerandupperthebeand

0 pjxfj

LU

j
th

jj

 

Step 3: The membership function for the given problem can 

be defined as: 
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Here  xU j is a strictly monotonic decreasing function with 

respect to  xf j0 . 

Following figure 4.1 illustrates the graph of the membership 

function   xf jj 0 , i.e.,    ,…, p,  j= xf jj 21,0 . 

Therefore the general aggregation function can be defined as  
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The fuzzy multi-objective formulation of the problem can be 
defined as: 
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The problem is to find out the optimal values of ( *x ) for this 

convex-fuzzy decision based on addition operator (like 
Tewari et al. (1987)). Therefore the problem (10) is reduced 
according to max-addition operator as: 
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The problem (9) reduces to 
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Fig.4.1: Membership function of min. prob.  
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The fuzzy multi-objective formulation of the standard primal 
problem can be defined as: 
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The dual form of the primal GPP which is stated in (13) can 
be given as:  
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The optimal values of the sample sizes of the problems
*
hn  

can be calculated with the help of the primal–dual 
relationship theorem (8). 
 

5. NUMERICAL 

Data from a sample survey using a double sampling 
technique were collected from northeastern Colorado in 
1979. The cost to obtain one direct and one indirect sample 
were estimated at $5.00 and $0.50, respectively. The total 
cost of the sample survey for the specified variances is $ 
550.00. The values of the variances and standard errors for 
each species were from Ahmad and Bonham (1987).  

Using the above values the primal problem can be written as: 
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The dual GPP of the above problem (18) is as follows: 
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Solving the above formulated dual problem (16), we have 
the corresponding solution as: 

 2862617.0)(and5635083.0,4364917.0 *
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The optimal values *
ix of the sample sizes of the standard 

primal problems can be calculated with the help of the 
primal–dual relationship theorem (8).   
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Using the above values the primal problem can be 

written as: 
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The dual GPP of the above problem (17) is as follows: 
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Solving the above formulated dual problem (18), we have 
the corresponding solution as: 

   003673.1)(and3981117.0,6018883.0 *
010201  wvww  

The optimal values *
ix of the sample sizes of the standard 

primal problems can be calculated with the help of the 
primal–dual relationship theorem (8).   

   **
00 wvwxf ij           

       
03673.0.1isfunctionobjective of valueand

438,66 2
**

022021
**

01101  xwvwxfxwvwxf  

 
Using the above values the primal problem can be written as:  
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The dual GPP of the above problem (19) is as follows: 
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Solving the above formulated dual problem (20), we have 
the corresponding solution as: 

   
1589412.0)(and

4142136.0,5857864.0

*
01

0201





wv

ww

 
The optimal values *

ix of the sample sizes of the standard 

primal problems can be calculated with the help of the 
primal–dual relationship theorem (8).   
 

   **
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.1589412.0isfunctionobjective of valueand

456,64 2
**

022021
**

01101  xwvwxfxwvwxf  

Using the above values the primal problem can be written as: 
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The dual GPP of the above problem (21) is as follows: 
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Solving the above formulated dual problem (22), we have 
the corresponding solution as: 

0671552.0)(and4796963.0,5203037.0 *
010201  wvww  

The optimal values *
ix of the sample sizes of the standard 

primal problems can be calculated with the help of the 
primal–dual relationship theorem (8).   

   **
00 wvwxf ij             

       
.0671552.0isfunctionobjective of valueand

527,57 2
**
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**

01101  xwvwxfxwvwxf  

Using the above values the primal problem can be written as: 
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The dual GPP of the above problem (23) is as follows: 
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Solving the above formulated dual problem (24), we have 
the corresponding solution as: 

   
0919044.0)(and

4555335.0,5444665.0

*
01
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wv

ww

 
The optimal values *

ix of the sample sizes of the standard 

primal problems can be calculated with the help of the 
primal–dual relationship theorem (8).   

   **
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501,60 2
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**
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Now the pay-off matrix of the above problems is given 
below: 
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Let          xxxxx 54321 and,,,,   be the fuzzy 

membership function of the objective function 
         xfandxfxfxfxf 0504030201 ,,,   respectively and 

they are defined as: 
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On applying the max-addition operator, the MOGPP, reduces  
to the crisp problem and the final problem is given as: 
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Degree of Difficulty of the problem (26) is =(4-(2+1) =1 
 
Hence the dual problem of the above problem (26) is given as: 
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For orthogonality condition defined in expression 26 (iii) are 
evaluated with the help of the payoff matrix which is defined 
below: 
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After solving the formulated dual problem (26) using lingo 
software we obtain the following values of the dual variables 
which are given as: 

3608.483)(and7763577.0,2236423.0 *
00201  iwvww  

The optimal values *
ix of the sample sizes of the standard 

primal problems can be calculated with the help of the 
primal–dual relationship theorem (11).   

   **
00 wvwxf ij             

    251

**

01101  xwvwxf

     8542
**

02202  xwvwxf   

The optimal values and the objective function value are  

given as:  .3608.483and854,25 *
2

*
1  xx  

 

6. CONCLUSIONS 
 
This paper gives the insightful study of the problem of 
Multivariate Double sampling Design which is formulated as 
a convex MOGPP with non-linear objective function and 
linear constraints. The fuzzy programming approach is used 
for converting the (MOGPP) into Single Objective Geometric 
Programming Problem (SOGPP) with the help of 
membership function.  The formulated SOGPP has been 
solved with the help of LINGO Software and the dual solution 
is obtained.  The optimum allocations are obtained with the 
help of primal-dual relationship theorem along with 
corresponding dual variables. A numerical example is 
illustrated to establish the practical utility of the given 
method in multivariate two-stage stratified sample surveys. 
The researcher can adopt this method for obtaining the 
solution of very complicated convex programming problem 
even with multi-stage sample survey problems. 
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