e-ISSN: 2395 -0056 p-ISSN: 2395-0072 ### "A Survey Paper On Efficient Privacy Preserving and Secure Data Integrity Protection In Regenerating Coding Based Public Cloud Storage" ¹Monika B Thakare, ²Prof. N.M.Dhande ¹Computer Science & Engineering, RTMNU University, A.C.E, Wardha, Maharashtra, India ¹thakare.monika894@gmail.com ²RTMNU University, A.C.E, Wardha, Maharashtra, India ²nutandhande@yahoo.com **ABSTRACT-** Now a day's use of cloud computing is rapidly increasing. Cloud infrastructure is being a common solution adopted by large organizations for storing and accessing data. It provides current need for data storage with a flexible and dynamic storage that can grow. In this paper we describe the design and development of a cloud computing based secure cloud data storage using encryption. Cloud data storage is a major solution to overcome this problem. These mechanisms to provide data integrity and security for client's data in cloud storages. In users should be able to just use the cloud storage as if it is local, without worrying about the need to verify its integrity. This understands the trend in terms of complexity and strength of a secured solution and provides some insights of what is still left in such area of research. Cloud data storage provide better privacy as well as ensure data availability and reliability can be achieved by dividing the user's data block into data pieces. Cloud storage is of critical importance so that users can resort to a third party auditor (TPA) to check the integrity of outsourced data and be worry-free. Volume: 03 Issue: 11 | Nov -2016 **Keywords:** Cloud Storage, Privacy Preserving, Public Auditing, Data integrity. #### I. INTRODUCTION Cloud computing resources can be quickly extracted with all the processes, services and applications provisioned on demand service despite the consequences of the user location or device. Many small scale businesses and organization can establish its infrastructure without the need for implementing actual hardware and software that are needed to build entire structure as it can entirely rely on the cloud services and use its resources on pay per use basis. The use of cloud computing service provides fast access the Applications and reduces service costs. Cloud computing is being very popular and largely separated especially with the increase usage of internet connectively and virtualization techniques. Every cloud users want to avoid untreated cloud provider for personal and important documents such as debit/credit cards details or medical report from hackers or malicious insiders is the importance. Cluster of cloud storage is created and maintained to satisfy the user specific data access requirements. The beauty of cloud computing is won't need to buy equipment to use the services. Cloud service providers to provide security, but cannot provide data integrity and security in all cases. As a result, the correctness of the data in the cloud is being at risk due to the following reasons. First, although the infrastructures under the cloud are much more powerful and reliable than personal computing devices, they are still facing the broad range of both internal and external threats for data integrity. And second, there do exist various motivations for CSP to behave unfaithfully toward the cloud users regarding their outsourced data status. To protect Outsourced data in cloud storage against corruptions, adding fault tolerance to cloud storage together with data integrity checking and failure reparation becomes critical. Public auditing scheme is for the regenerating-code-based cloud storage. Volume: 03 Issue: 11 | Nov -2016 www.irjet.net ## 5. Privacy-Preserving Public Auditing for Data Storage Security in Cloud Computing[6] e-ISSN: 2395 -0056 p-ISSN: 2395-0072 In this paper author focus on combination the public key based homomorphic authenticator with random masking to achieve the privacy-preserving public cloud data auditing system. It supports efficient handling of multiple auditing tasks. They explorer TPA can perform multiple auditing tasks simultaneously. # 6. Distributed data possession checking for securing multiple replicas in geographically dispersed clouds [6] In this paper author will help it provide a novel efficient Distributed Multiple Replicas Data Possession Checking (DMRDPC) scheme to tackle new challenges. It also will help the cloud users to achieve efficient multiple replicas data possession checking. It is important to ensure that each replica should have availability and data integrity features. In this paper Remote data possession checking is a valid method to verify the replica's availability and integrity. ## 7. Toward secure and dependable storage services in cloud computing [7] In this paper author proposed a flexible distributed storage integrity auditing mechanism, utilizing the homomorphism token and distributed erasure-coded data. It proposed design allows users to audit the cloud storage with very lightweight communication and computation cost. The proposed design further supports secure and efficient dynamic operations on outsourced data, including block modification, deletion, and append. It proposed scheme is highly efficient and resilient against malicious data modification attack, and even server colluding attacks. # 8. Secure and efficient privacy preserving public auditing scheme for cloud storage[8] In this paper author propose a new privacy preserving public auditing mechanism for shared data in an untrusted cloud. Here, It utilize ring signature so that the third party auditor is able to verify the integrity of shared data for a group of users without retrieving the entire data while the identity of the signer on each #### **II.LITERATURE REVIEW** ### 1. Privacy-Preserving Public Auditing for Regenerating-Code-Based Cloud Storage [1] In this paper author it proposed two schemes first for auditing scheme and second for privacy preserving. It proposed public auditing scheme which allows the public verifier to audit the correctness of data even in which the data owner is offline. They proposed the data owner is able to generate those authenticators in a new method, which is more efficient compared to the straightforward approach. # 2. Enabling Data Integrity Protection In Regenerating-Coding-Based Cloud Storage: Theory and Implementation[2] In this paper Henry C.H. Chen implement the DIP scheme which is designed under a mobile and enable client to feasibly verify the integrity of random subsets of outsourced data. It works under the simple assumption of thin-cloud storage and allows different parameters. # 3. NCCloud: A Network-Coding-Based Storage System in a Cloud-of-Clouds[3] This paper author implement an auditing framework for cloud storage systems and it propose an efficient and privacy-preserving auditing protocol, further extended auditing protocol to support the data operation. It also checks the correctness of the data operation. It implement batch auditing for both multiple owners and multiple clouds. # 4. An Efficient and Secure Dynamic Auditing Protocol for Data Storage in Cloud Computing [4] This paper the author is focus on an auditing framework for cloud storage systems and proposes an efficient and privacy-preserving auditing protocol, further extended auditing protocol to support the data dynamic operation. The further extend auditing protocol to support batch auditing for both multiple owners and multiple clouds, without using any trusted organizer. Volume: 03 Issue: 11 | Nov -2016 www.irjet.net e-ISSN: 2395 -0056 p-ISSN: 2395-0072 block in shared data is kept private from the TPA. This paper provides a privacy preserving public auditing scheme that supports public auditing and identity privacy on shared data stored in the cloud storage service for enhancing its security and efficiency. ## Network coding for distributed storage systems[9] In this paper author introduce a general technique to analyze storage architectures that combine any form of coding and replication, as well as presenting two new schemes for maintaining redundancy using erasure codes. It shows how network coding can help for such distributed storage scenarios. ## 10. A survey on network codes for distributed storage[10] In this paper author proposed the demand for large scale data storage has increased significantly, with applications. The peer-to peer networks, redundancy must be introduced into the system to improve reliability against node failures. It realizes the increased reliability of coding however, one has to address the challenge of maintaining an erasure encoded representation. # 11. NCCloud: Applying network coding for the storage repair in a cloud-of-clouds[11] In this paper author proposed cloud storage provides an on-demand remote backup solution. To provide fault tolerance for cloud storage to proposed data across multiple cloud vendors. It preserves data redundancy. It implements a proof-of-concept prototype of NCCloud and deploys it atop both local and commercial clouds. ### 12. HAIL: A high-availability and integrity layer for cloud storage[12] In this paper author proposed HAIL a distributed cryptographic system that permits a set of servers to prove to a client that a stored file is intact and retrievable. HAIL cryptographically verifies and reactively reallocates file shares. It explore a unification to remote file-integrity assurance in a system that call HAIL (High-Availability and Integrity Layer). ### 13. Enhancing Security and Privacy in Multi Cloud Computing Environment[13] In this paper authors implement the cloud computing is a cost-effective, service availability, flexible and on demand service delivery platform for providing business through the internet. It is a form of secret sharing. The use of cloud computing for many reasons including because this service provide fast access the Applications and reduce service costs. ### 14. Security Approach for Multi-Cloud Data Storage[14] In this paper author proposed transformation of information and storage of sensitive data has highest priority. Cluster of cloud storage is created and maintained accordingly to satisfy the user specific data access requirements. It is important to ensure that each replica should have availability and data integrity features. #### 15. A Privacy Manager for Cloud Computing[15] In this paper author proposed it describes a privacy manager for cloud computing, It also describes how Trusted Computing mechanisms can optionally be used to enhance privacy management. The result of the processing is by the privacy manager to reveal the correct result. Data Storage in Volume: 03 Issue: 11 | Nov -2016 www.irjet.net e-ISSN: 2395 -0056 p-ISSN: 2395-0072 and privacy- # III. COMPATATIVE STUDY OF LITERATURE SURVEY | | | | SURVE | Y | | Cloud | | | preserving auditing | |---|------------------|--------|-----------|------------------------|---|-------------------|-------|-------------|------------------------| | S | NAME OF | YEAR | AUTHOR | DESCRIPTION | | Computing | | | protocol. | | R | PAPER | | | | 5 | Privacy- | May- | Cong | It used public key | | | | | | | | Preserving | 2010 | Wang, | based homomorphic | | | | | | | | Public Auditing | | Qian | authenticator for | | N | | | | | | for Data Storage | | Wang, | security. | | C | | | | | | Security in | | and Kui | | | 1 | Privacy- | April- | Jian Liu, | It used first auditing | | Cloud | | Ren, | | | | Preserving | 2015 | Kun | scheme and second | | Computing | | Wenjing | | | | Public Auditing | | Huang, | for privacy | | | | Lou. | | | | for | | Hong | preserving. | 6 | Distributed data | Septe | J.He, Y. | It provide a novel | | | Regenerating- | | Rong, | | | possession | mber | Zhang, G. | efficient Distributed | | | Code-Based | | Huimei | | | checking for | -2012 | Huang, Y. | Multiple Replicas | | | Cloud Storage. | | Wang, | | | securing | | Shi, and J. | Data Possession | | | | | and Ming | | | multiple | | Cao. | Checking (DMRDPC) | | | | | Xian | | | replicas in | | | scheme to tackle | | 2 | Enabling Data | July- | Henry | It used DIP scheme | | geographically | | | new challenges. | | | Integrity | 2014 | C.H. Chen | which is designed | | dispersed | | | | | | Protection In | | and | under a mobile and | | clouds | | | | | | Regenerating- | | Patrick | enables a client to | 7 | Toward secure | April | C. Wang, | It design secure and | | | Coding-Based | | P.C. Lee | feasibly verify the | | and dependable | /june | Q. Wang, | efficient dynamic | | | Cloud Storage: | | | integrity. | | storage services | 2012 | K. Ren, N. | operations on | | | Theory and | | | | | in cloud | | Cao, and | outsourced data, | | | Implementation | | | | | computing | | W. Lou | including block | | 3 | NCCloud: A | June- | В. Р. | It checks the | | | | | modification, | | | Network- | 2014 | Jackson, | correctness of the | | | | | deletion, and | | | Coding-Based | | A. A. | data operation. It | | | | | append. | | | Storage System | | Goshtsab | implement batch | 8 | Secure and | Janua | S. G. | It utilize ring | | | in a Cloud-of- | | у | auditing scheme. | | efficient privacy | ry- | Worku, | signature so that the | | | Clouds | | | | | preserving | 2013 | C. Xu, J. | third party auditor is | | 4 | An Efficient and | May - | Kan | It used auditing | | public auditing | | Zhao, | able to verify the | | | Secure Dynamic | 2013 | Yang, | framework for cloud | | scheme for | | and X. | integrity of shared | | | Auditing | | Xiaohua | storage systems and | | cloud storage | | Не. | data for a group of | | | Protocol for | | Jia, | proposes an efficient | | | | | users. | Volume: 03 Issue: 11 | Nov -2016 v www.irjet.net | 9 | Network coding | Septe | A. G. | Introduce a general | |---|------------------|-------|------------|------------------------| | | for distributed | mber | Dimakis, | technique to analyze | | | storage systems | -2010 | P. B. | storage architectures | | | | | Godfrey, | that combine any | | | | | Y. Wu, M. | form of coding and | | | | | J. | replication. | | | | | Wainwri | | | | | | ght, and | | | | | | K. | | | | | | Ramchan | | | | | | dran. | | | 1 | A survey on | Marc | A. G. | It realizes the | | 0 | network codes | h- | Dimakis, | increased reliability | | | for distributed | 2011 | K. | of coding. | | | storage | | Ramchan | | | | | | dran, Y. | | | | | | Wu, and | | | | | | C. Suh. | | | 1 | NCCloud: | Marc | Y. Hu, H. | It provides an on- | | 1 | Applying | h- | С. Н. | demand remote | | | network coding | 2012 | Chen, P. | backup solution. To | | | for the storage | | P. C. Lee, | provide fault | | | repair in a | | and Y. | tolerance. | | | cloud-of-clouds | | Tang. | | | 1 | HAIL: A high- | Dece | K. D. | It retrievable. HAIL | | 2 | availability and | mber | Bowers, | cryptographically | | | integrity layer | 2009 | A. Juels, | verifies and | | | for cloud | | and A. | reactively reallocates | | | storage | | Oprea. | file shares. | | | | | | | | 1 | Enhancing | May- | Hassan | It provide fast access | | 3 | Security and | 2007 | Takabi, | the Applications and | | | Privacy in Multi | | James | reduce service costs. | | | Cloud | | B.D., | | | | Computing | | Joshi, | | | ш | | L | l | | | | Environment | | Gail-
Joon,
Ahn, | | |-----|--|------------------------|--|--| | 1 4 | Security Approach for Multi-Cloud Data Storage | Septe
mber
-2015 | Mohamm
ed A.
AlZain,
Ben Soh,
Eric
Pardede, | Cluster of cloud
storage is created
and maintained
accordingly to satisfy
the user specific data
access requirements. | | 5 | A Privacy
Manager for
Cloud
Computing | June-
2008 | R. Curtmola , O. Khan, R. Burns, and G. Ateniese, | Trusted Computing mechanisms can optionally be used to enhance privacy management. | e-ISSN: 2395 -0056 p-ISSN: 2395-0072 #### **IV.PROBLEM DEFINITION** - Regenerating codes have recently been proposed to minimize repair traffic. - The auditing schemes imply the problem that users need to always stay online. - It fully ensures the data integrity and save the users computation resources as well as online burden. #### **V.OBJECTIVE** The main objectives of the study are listed below: - To calculate the time of communication of cloud data storage. - To generate the security for the TPA. - To provide the execution time of encryption and decryption for security analysis. - To Performing Comparative time of computation. Volume: 03 Issue: 11 | Nov -2016 www.irjet.net p-ISSN: 2395-0072 #### VI. PROPOSED SYSTEM Fig: Cloud Regeneration System Architecture In this paper focus on the integrity verification problem in regenerating-code-based cloud storage, especially with the functional repair strategy as shown in Fig.1.The proposed system contains the cluster of cloud storages. It may call as "Cloud of clouds" or "multi clouds". These individual clouds are interconnected to each other. Here, the user uploaded file is replicated on more than one cloud storage that is two to three different interconnected but individual clouds. Our system assigns a unique number to the file which is used by to generate the set of secret keys. The auditing system model for Regenerating-Code-based cloud storage as which consist of four blocks: data owner which consist of large amount of data stored in the cloud; the cloud, which provides cloud services; provide storage service and have significant computational resources; the third party auditor (TPA) conducts public audits on the coded data in the cloud, its audit results are unbiased for both data owner and cloud servers; and proxy agent, who is semi-trusted and acts on behalf of the data owner to regenerate authenticators and data blocks on the failed servers during the repair procedure. The proxy is supposed to be much more powerful than the data owner but less than the cloud servers in terms of computation and memory capacity, who would be always online. The data owners to the TPA for integrity verification and delegate the reparation to the proxy. The proxy, who would always be online, is supposed to be much more powerful than the data owner but less than the cloud servers in terms of computation and memory capacity. To save resources as well as the online burden potentially brought by the periodic auditing and accidental repairing, the data owners resort to the TPA for integrity verification and delegate the reparation to the proxy. #### VII.CONCLUSION e-ISSN: 2395 -0056 In this paper, it presents a public auditing scheme for the regenerating-code-based cloud storage system, where the data owners are privileged to delegate TPA for their data validity checking. To provide security to the original data privacy against the TPA, It randomizes the coefficients in the starting rather than applying the blind technique within the auditing process. Assuming that data owner is not always able to stay online in practice, in order to keep storage available and verifiable after malicious corruption, we introduce semi trusted proxy into the system model and provide a privilege for proxy to handle the reparation of coded block and authenticators. Thus, this authenticator can be efficiently generated by the data owner simultaneously with encoding procedure. #### REFERENCES - [1] Jian Liu, Kun Huang, Hong Rong, Huimei Wang, and Ming Xian, "Privacy Preserving Public Auditing for Regenerating-Code-Based Cloud Storage", 2015. - [2] Henry C.H. Chen and Patrick P.C. Lee, "Enabling Data Integrity Protection in Regenerating-Coding-Based Cloud Storage: Theory and Implementation", 2014. - [3] Henry C.H. Chen, Yuchong Hu, Patrick P.C. Lee, and Yang Tang, "NCCloud: A Network-Coding-Based Storage System in a Cloud-of-Clouds", 2014. - [4] Kan Yang, Xiaohua Jia, "An Efficient and Secure Dynamic Auditing Protocol for Data Storage in Cloud Computing", 2013. - [5] Yan Zhu, Hongxin Hu, Gail-Joon Ahn, and Mengyang Yu, "Cooperative Provable Data Possession for Integrity Verification in Multicloud Storage", 2012. - [6] Cong Wang, Qian Wang, and Kui Ren, Wenjing Lou, "Privacy-Preserving Public Auditing for Data Storage Security in Cloud Computing", 2010. - 7] J.He, Y. Zhang, G. Huang, Y. Shi, and J. Cao, "Distributed data possession checking for securing multiple replicas in geographically dispersed clouds," J. Comput. Syst. Sci., vol. 78, no. 5, pp. 1345–1358, 2012. - [8] C. Wang, Q. Wang, K. Ren, N. Cao, and W. Lou, "Toward secure and dependable storage services in cloud computing," Apr./Jun. 2012. Volume: 03 Issue: 11 | Nov -2016 www.irjet.net p-ISSN: 2395-0072 - [9] S. G. Worku, C. Xu, J. Zhao, and X. He, "Secure and efficient privacy preserving public auditing scheme for cloud storage", 2013. - [10] A. G. Dimakis, P. B. Godfrey, Y. Wu, M. J. Wainwright, and K. Ramchandran, "Network coding for distributed storage systems," Sep. 2010. - [11] Y. Zhu, H. Hu, G.-J. Ahn, and M. Yu, "Cooperative provable data possession for integrity verification in multicloud storage," IEEE Trans. Parallel Distrib. Syst., vol. 23, no. 12, pp. 2231–2244, Dec. 2012. - 12] A. G. Dimakis, K. Ramchandran, Y. Wu, and C. Suh, "A survey on network codes for distributed storage," Proc. IEEE, vol. 99, no. 3, pp. 476–489, Mar. 2011 - [13] H. Shacham and B. Waters, "Compact proofs of retrievability," in Advances in Cryptology. Berlin, Germany: Springer-Verlag, 2008, pp. 90–107. - [14] Y. Hu, H. C. H. Chen, P. P. C. Lee, and Y. Tang, "NCCloud: Applying network coding for the storage repair in a cloud-of-clouds," in Proc. USENIX FAST, 2012, p. 21. - [15] C. Wang, Q. Wang, K. Ren, and W. Lou, "Privacy-preserving public auditing for data storage security in cloud computing," in Proc. IEEE INFOCOM, Mar. 2010, pp. 1–9 - [16] C. Wang, S. S. M. Chow, Q. Wang, K. Ren, and W. Lou, "Privacy-preserving public auditing for secure cloud storage," IEEE Trans. Comput., vol. 62, no. 2, pp. 362–375, Feb. 2013. - [17] G. Ateniese et al., "Provable data possession at untrusted stores," in Proc. 14th ACM Conf. Comput. Commun. Secur. (CCS), New York, NY, USA, 2007, pp. 598–609. - [18] A. Juels and B. S. Kaliski, Jr., "PORs: Proofs of retrievability for large files," in Proc. 14th ACM Conf. Comput. Commun. Secur., 2007, pp. 584–597. - [19] R. Curtmola, O. Khan, R. Burns, and G. Ateniese, "MR-PDP: Multiple-replica provable data possession," in Proc. 28th Int. Conf. Distrib. Comput. Syst. (ICDCS), Jun. 2008, pp. 411 420. - [21] K. D. Bowers, A. Juels, and A. Oprea, "HAIL: A high-availability and integrity layer for cloud storage," in Proc. 16th ACM Conf. Comput. Commun. Secur., 2009, pp. 187–198. [22] J. He, Y. Zhang, G. Huang, Y. Shi, and J. Cao, "Distributed data possession checking for securing multiple replicas in geographically dispersed clouds," J. Comput. Syst. Sci., vol. 78, no. 5, pp. 1345–1358, 2012. e-ISSN: 2395 -0056 - [23] S. Subashini, V.Kavitha, "A Surveys on Security and privacy Issues invService Delivery Models of the Cloud Computing", Journal of Networks and Computer Applications, 34 (1), 2011, pp1-11. - [24] Dawson, E.; Donovan, D. (1994), "The breadth of Shamir's secretsharing scheme", Computers & Security 13: 69–78 - [25] Cloud Computing Security: From Singleto Multi-Clouds, 2012, 45^{th} Hawaii International Conference on System Sciences - [26] Md. TanzimKhorshed, A.B.M. Shawkat Ali, Saleh A. Wasimi, "A surveys on gaps, threat remediation challenge, and some thoughts for proactive attack detection in the cloud computing", School of Information and Communication Technology, CQ University QLD 4702, Australia. Received 15 August 2011. Revised 11 January 2012. Accepted 18 January 2012. Available online 27 January 2012. - [27] C. Cachin, I. Keidarand A. Shraer, "Trusting the cloud", ACM SIGACT News, 40, 2009, pp. 81-86. - [28] A. Bessani, M. Correia, B. Quaresma, F. André and P. Sousa, "DepSky: dependable and secure storage in a cloud-of-clouds", EuroSys'11:Proc. 6thConf. On Computer systems, 2011, pp. 31-46. - [29] Review of methods for secret sharing in cloud Computing- "International Journal of Advanced Research in Computer Engineering & Technology IJARCET)", Volume 2, Issue 1, January 2013 - [30] D. Boneh and M. Franklin, "Identity-based encryption from the Weil pairing," in Advances in Cryptology. Berlin, Germany: Springer Verlag, 2001, pp. 213–229. - [31] A. Miyaji, M. Nakabayashi, and S. Takano, "New explicit conditions of elliptic curve traces for FR-reduction," IEICE Trans. Fundam. Electron., Commun., Comput. Sci., vol. E84-A, no. 5, pp. 1234–1243, 2001. - [32] R. Gennaro, J. Katz, H. Krawczyk, and T. Rabin, "Secure network coding over the integers," in Public Key Cryptography. Berlin, Germany: Volume: 03 Issue: 11 | Nov -2016 www.irjet.net p-ISSN: 2395-0072 Springer-Verlag, 2010, pp. 142–160. [33] S. Goldwasser, S. Micali, and R. L. Rivest, "A digital signature schemesecure against adaptive chosen-message attacks," SIAM J. Comput., vol. 17, no. 2, pp. 281–308, 1988. e-ISSN: 2395 -0056