
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 11 | Nov -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1058

An Efficient Harvesting scheme for Deep Web Interfaces based on

Two-Stage Crawler

Shinde Pavan B1, Sonkar Shriniwas K2

1 Department of Computer Engineering, Amrutvahini College of Engineering,
 Maharashtra, India

2 Department of Computer Engineering, Amrutvahini College of Engineering,
 Maharashtra, India

---***---

Abstract - The web pages available in the Internet are
growing tremendously so that searching relevant information
in the Internet is tedious job. A lot of this information is hidden
behind query forms that interface to unexplored databases
containing high quality structured data. General search
engines cannot extract and index this hidden part of the Web,
retrieving this hidden data is challenging task. So that large
number of web data resources and the dynamic nature of deep
web sites, achieving wide coverage and high efficiency is a
challenging task. We propose a two-stage framework, namely
SmartCrawler, for effective searching deep web interfaces.
First stage of SmartCrawler performs site-based searching for
pages with the help of web crawler, avoiding visiting a large
number of sites. To produce more relevant results for a focused
crawl, SmartCrawler ranks links to prioritize highly relevant
pages for a given topic. Then in second stage, it achieves fast
in-site searching by extracting most relevant links with an
adaptive link-ranking.

Key Words: Smart crawler, Deep web, ranking, adaptive
learning

1.INTRODUCTION

All over the world the internet is a collection of billions of
web server containing large bytes of information or data
arranged in N number of servers. Its tedious job locate the
deep web databases, because they are not recorded by any
search engines, are usually sparsely distributed, and keep
constantly changing. To overcome above problem, previous
work has proposed two types of crawlers, generic and
focused crawlers. The Generic crawlers extract all searchable
forms and cannot focus on a specific topic. In Focused
crawlers such as Form-Focused Crawler and Adaptive
Crawler for Hidden-web Entries can automatically search
online databases on a particular topic. Form-Focused
Crawler is designed with link, page, and form classifiers for
focused crawling of web forms, and then by Adaptive
Crawler for Hidden-web Entries with additional components
for form filtering and adaptive link learner. The link
classifiers in these crawlers perform a major role in
achieving higher crawling efficiency than the best-first

crawler. These link classifiers are used to predict the
distance to the page containing searchable forms, which is
difficult to calculate, especially when for the delayed benefit
links.

The Crawler performs an advanced level of data analysis and
data retrieved from the web. The SmartCrawler is divided
into two stages- First is Site locating and second is in-site
exploring. In the first stage, Crawler performs site-based
searching for center pages with the help of search engines,
avoiding visiting a number of pages. To achieve more
accurate results for a focused crawl, SmartCrawler ranks
websites to prioritized highly relevant website for a given
topic. In the second stage, SmartCrawler achieves fast in-site
locating to excavate most relevant links with an adaptive
link-ranking.

2.RELATED WORK

There are many search engines written in every
programming and scripting language to serve a variety of
search engines depending on the requirement, purpose and
functionality for which the crawler is created. The first ever
web crawler to be built to fully function is the WebCrawler in
1994. Then a lot of other better and more efficient crawlers
were built over the recent years. The most notable of the
crawlers currently in operation are as follows. But these first
generations have some of the issues in web crawling design;
it is not focus on scalability.
A].Internet archive Crawler:
Mike Burner designed the Internet Archive Crawler in 1997
as the first paper that focused on the challenges caused by the
scale of web [2]. It uses multiple machine to extract the web
data and it crawl on millions of URLs [1]. Each crawler
process read a list of seed URLs for its assigned servers from
disk into per-site queue, and then it uses asynchronous I/O
data to extract pages from these queues in parallel.
B].Google Search Engine:
Later in 1998, The Google search uses this crawling bot. The
original Google crawling system consists of a five searching
components which was extracting the relevant information in
various process and extract the pages [2].
Each crawler process used asynchronous I/O instructions to
extract the data from N number of web servers in parallel [1].
Then all the crawlers transmit downloaded links to a single

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 11 | Nov -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1059

Data Server process that compressed the page and store them
on disk. It has a URL server that exclusively handles URLs. It
checks if the URLs have previously been crawled. It they are
not crawled they are added to the queue. Google Crawler was
based on C++ and Python language tools. This crawler was
designed with the indexing process.
 C].Mercator Web Crawler:
In 1999 Heydon and Najork design a web crawler which was
highly scalable and easily extensible [3][1]. It was written in
Java language. The first version was non-distributed and later
the distributed version was made available which divide the
URL space over the crawlers according to host name and URL
server.
D].WebFountain crawler:
In 2001, IBM presented another distributed and modular
crawler [4][1]. It was written in C++ and used MPI to
facilitate the communication between the various processes.
It has three major component Multi-threaded crawling
processes, duplicate content and central controlled process. It
was deployed on a cluster of 48 crawling machine. It has a
controller and ant machines that repeatedly download pages.
A non-linear programming method is used to solve freshness
maximizing equations. We also have a lot of open source
crawlers that are available online and can be used according
to needs for non-commercial purposes.
E].IRLbot Web crawler:
Yan et al. describe IRLbot, which is single process web
crawler [1]. It crawls over two month and downloads the 6.4
billion web sites.
To leverage the large volume information stored in deep web,
previous work has proposed a number of tools and
techniques, including deep web understanding and
integration, hidden web crawlers, and deep web samplers.
For all these approaches, the ability to crawl deep web is a
key challenge.

3. SYSTEM ARCHITECTURE

An Effective harvesting scheme for Deep Web Interfaces
based on Two-stage Crawler performs in two stages like web
site locating and in-site exploring, as shown in following
Figure.

Fig.1. Architecture of SmartCrawler in two stages

At the First stage, SmartCrawler finds the most relevant web
site for a given topic and in the second stage will be in-site
exploring stage which uncovers searchable content from the
site.
Stage1: In this stage site locating starts with a seed set of
sites in a site database. Seeds sites are candidate sites given
for Crawler to start searching, which begins by following
links from chosen seed sites to explore other sites and other
servers. When the number of unvisited links in the database
is less than a threshold during the crawling process, Crawler
performs ”reverse searching” of known deep web sites for
center pages i.e. highly ranked pages that have many links to
other domains and store these pages back to the site
database. Site Frontier extracts homepage link from the site
databases, which are ranked by Site Ranker to prioritize
highly relevant sites. The Site Ranker is improved during
crawling by an Adaptive Site Learner, which adaptively
learns from features of deep-web sites (web sites containing
one or more searchable forms) found. To achieve more
correct results for a focused crawl, Site Classifier categorizes
links into relevant or irrelevant for a given topic according to
the homepage content.
Stage 2: After the most relevant site is found in the first
stage, the second stage performs efficient in-site exploration
for excavating searchable forms. Links of a site are stored in
Link Frontier and corresponding pages are extracted and
embedded forms are classified by Form Classifier to find
searchable forms. Additionally, the links in these pages are
extracted into Candidate Frontier. To prioritize links in
Candidate Frontier, SmartCrawler sort them with Link
Ranker. Note that site locating stage and in-site exploring
stage are mutually intertwined. When the crawler discovers
a new site, the site’s link is inserted into the Site Database.
The Link Ranker is adaptively improved by an Adaptive Link
Learner, which learns from the URL path leading to relevant
forms.
To address the above problem, we propose two crawling
strategies, reverse searching and incremental two-level site
prioritizing, to find more sites.

A. Algorithm
1. Reverse searching for more sites:
Input for system: seed sites and extracted deep websites
Output from System: relevant sites
1 while numbers of candidate sites less than a threshold
value
2 // pick a deep website
3 site = getDeepWebSite(siteDatabase,seedSites)
4 resultPage = doReverseSearch(site)
5 links = extracttheLinks(result Page)
6 foreach link in links do
7 page = downloadPages(link)
8 relevant = classifyRelevant(page)
9 if relevant then
10 relevantSites =extractUnvisitedSiteLink(page)
11 Display MostRelevantSites
12 end

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 11 | Nov -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1060

13 end
14 end

B. Algorithm
1. Incremental site prioritizing.
Making of crawling process resumable and get broad
coverage on websites, an incremental site prioritizing
strategy is proposed. The idea is to stored learned patterns
of deep web sites and form paths for incremental crawling.
First we obtain prior knowledge for initializing Site ranker
and Link ranker. The unvisited sites are given to Site
Frontier and are ranked by Site Ranker, and visited sites are
given to extracted site list. The detailed incremental site
prioritizing process is described in following Algorithm.
Site Frontier uses two queues to save unvisited sites. First
the high priority queue is for out-of-site links that are
classified as relevant site by Site Classifier and are judged by
Form Classifier to contain searchable forms. The low priority
queue is for out-of site links that are classified as relevant
site by Site Classifier. The Site Ranker gives relevant scores
for prioritizing sites. The low priority queue is used to
provide more candidate sites. If the high priority queue is
empty, then sites in the low priority queue are transfer into
it.
Input : siteFrontier
output: searchable forms and out-of-site links
1 HQueue=SiteFrontier.CreateHQueue(HighPriority)
2 LQueue=SiteFrontier.CreateLQueue(LowPriority)
3 while siteFrontierQueue is not empty then do
4 if HQueue is empty then
5 HQueue.addAllLink(LQueue)
6 LQueue.clear()
7 end
8 site = HQueue.Poll()
9 relevant site = classifySite(site)
10 if relevant link then
11 perform InSite Exploring(site)
12 Output forms and OutOfSiteLinks
13 siteRanker.rankLink(OutOfSiteLinks)
14 if forms link is not empty then
15 HQueue.addLink (OutOfSiteLinks)
16 end
17 else
18 LQueue.add(OutOfSiteLinks)
19 end
20 end
21 end

4.MATHEMATICAL MODEL

Let S be the system such that,
 S = {s, e, X, Y, A, Q, E…… | Φs}
 s - Initial State
 e - End State
 X - Input = Web URL

 Y - Output = Crawler is a focused crawler consisting
of two stages:
 a) Efficient site locating and
 b) Balanced in-site exploring
A - Algorithms:
Reverse searching for more sites
Incremental site prioritizing
Q - Queries
E - Entities
E = {E1, E2}
 E1 = User
 E2 = Web browser
Comes here Conclusion content comes here Conclusion
content comes here Conclusion content comes here .
Conclusion content comes here

5.RESULTS

Fig.2 Smart crawler results

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 11 | Nov -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 1061

Fig 3: Comparison of basic crawler and smart crawler

CONCLUSION

An effective harvesting framework for deep-web interfaces,
namely Smart-Crawler is proposed. It has been shown that
above approach achieves each wide coverage for deep web
interfaces and maintains highly efficient pages harvesting.
Smart Crawler is a focused crawler consisting of 2 stages:
efficient web site locating and then balanced in-site
exploring. This Smart Crawler performs site-based locating
by reversely searching the known deep web sites for center
pages, which can effectively find many data sources for
sparse domains. By ranking deep web sites and by focusing
the crawling on a topic, SmartCrawler achieves more
accurate results. Our experimental results display how two
stage smart crawlers achieves higher harvest rates than
other basic crawlers.

REFERENCES

[1] Feng Zhao, Jingyu Zhou, Chang Nie, Heqing Huang, Hai

Jin “SmartCrawler: A Two Stage Crawler For Efficiently
harvesting Deep-Web interfaces” IEEE Transactions on
Services Computing Volume:99 PP Year: 2015

[2] Olston and M. Najork , “Web Crawling”, Foundations and
Trends in Information Retrieval, vol. 4, No. 3 ,pp. 175–
246, 2010 R. Nicole, “Title of paper with only first word
capitalized,” J. Name Stand. Abbrev., in press.

[3] M. Burner, “Crawling towards Eternity: Building an
Archive of the World Wide Web,” Web Techniques
Magazine, vol. 2, pp. 37-40, 1997.

[4] Allan Heydon and Marc Najork. Mercator: A scalable,
extensible web crawler. World Wide Web Conference,
2(4):219–229, April 1999.

[5] Jenny Edwards, Kevin S. McCurley, and John A. Tomlin.
An adaptive model for optimizing performance of an
incremental web crawler. In Proceedings of the Tenth
Conference on World Wide Web, pages 106–113, Hong
Kong, May 2001. Elsevier Science.

[6] Roger E. Bohn and James E. Short. How much
information? 2009 report on american consumers.
Technical report, University of California, San Diego,
2009.

[7] Martin Hilbert. How much information is there in the
”information society”? Significance, 9(4):8–12, 2012.

[8] Michael K. Bergman. White paper: The deep web:
Surfacing hidden value. Journal of electronic publishing,
7(1), 2001

[9] Yeye He, Dong Xin, Venkatesh Ganti, Sriram Rajaraman,
and Nirav Shah. Crawling deep web entity pages. In
Proceedings of the sixth ACM international conference
on Web search and data mining, pages 355–364. ACM,
2013.

[10] Infomine.UC Riverside library. http://lib-
www.ucr.edu/,2014.

[11] Clusty’s searchable database directory.
http://www.clusty.com/, 2009.

[12] Booksinprint. Books in print and global books in print
access. http://booksinprint.com/, 2015.

[13] Kevin Chen-Chuan Chang, Bin He, and Zhen Zhang.
Toward large scale integration: Building a metaquerier
over databases on the web. In CIDR, pages 44–55, 2005.

[14] Denis Shestakov. Databases on the web: national web
domain survey. In Proceedings of the 15th Symposium
on International Database Engineering & Applications,
pages 179–184. ACM, 2011.

[15] Denis Shestakov and Tapio Salakoski. Host-ip clustering
technique for deep web characterization. In Proceedings
of the 12th International Asia-Pacific Web Conference
(APWEB), pages 378–380. IEEE, 2010.

[16] Denis Shestakov and Tapio Salakoski. On estimating the
scale of national deep web. In Database and Expert
Systems Applications, pages 780–789. Springer, 2007

[17] Shestakov Denis. On building a search interface
discovery system. In Proceedings of the 2nd
international conference on Resource discovery, pages
81–93, Lyon France, 2010.Springer.

[18] Luciano Barbosa and Juliana Freire. Searching for
hiddenweb databases. In WebDB, pages 1–6, 2005.

http://lib-www.ucr.edu/,2014
http://lib-www.ucr.edu/,2014

