e-ISSN: 2395 -0056 www.irjet.net Volume: 03 Issue: 11 | Nov -2016 p-ISSN: 2395-0072

Fixed point theory for cyclic generalized contractions in partial metric spaces

Dr C Vijender

Dept of Mathematics, Sreenidhi Institute of Sciece and Technology, Hyderabad.

Abstract

In this article, we give some fixed point theorems for mappings satisfying cyclical generalized contractive conditions in complete partial metric spaces.

Key Words: Fixed point, partial metric, (c)-comparison function, special Picard operator.

1 INTRODUCTION:

The well knownBanach's fixed point theorem asserts that: If (X, d) is a complete metric space and $f: X \to X$ is a mapping such that

$$d(f(x),f(y)) \le \lambda d(x,y)$$

for all $x, y \in X$ and some $\lambda \in [0,1)$, then f has a unique fixed point in X. Kannan [1] extended Banach's fixed point theorem to the class of maps $f: X \to X$ satisfying the following contractive condition:

$$\mathsf{d}(\mathsf{f}(\mathsf{x}),\mathsf{f}(\mathsf{y})) {\leq} \lambda [\mathsf{d}(\mathsf{x},\mathsf{f}(\mathsf{x})) {+} \mathsf{d}(\mathsf{y},\mathsf{f}(\mathsf{y}))]$$

for all $x, y \in X$ and some $\lambda \in (0,1/2)$. Reich [2] generalized both results using the contractive condition: $d(f(x),f(y)) \le \alpha d(x,y) + \beta d(x,f(x)) + \gamma d(y,f(y))$

for each $x, y \in X$, where α, β, γ are nonnegative real numbers statisfying $\alpha + \beta + \gamma < 1$.

Matkowski [3] used the following contractive condition:

$$d(f(x),f(y)) \le \varphi(d(x,y))$$

for all $x, y \in X$, where $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ is a nondecreasing function such that $\lim_{n \to \infty} \varphi^n(t) = 0$ for all t > 0. In 1994, Matthews [4] introduced the notion of a partial metric space and obtained a generalization of Banach's fixed point theorem for partial metric spaces. Recently, Altun et al. [5] (see also Altun and Sadarangani [6]) gave some generalized versions of the fixed point theorem of Matthews [4]. Di Bari and Vetro [7] obtained some results concerning cyclic mappings in the framework of partial metric spaces. We recall below the definition of partial metric space and some of its properties (see [4, 5, 8, 9]).

Definition 1 A partial metric on a nonempty set X is a function $p: X \times X \to \mathbb{R}_+$ such that for all x, y, z, $\in X$:

$$p_{1:} x = y \Leftrightarrow p(x, x) = p(x, y) = p(y, y),$$

$$p_{2:} p(x, x) \leq p(x, y),$$

$$p_{3}$$
: $p(x, y) = p(y, x)$,

$$p_{4:} \, p(x,y) \leq p(x,z) + p(z,y) - p(z,z).$$

A partial metric space is a pair (X, p) where X is a nonempty set and p is a partial metric on X. The function $p(x, y) = \max\{x, y\}$ for all $x, y \in \mathbb{R}_+$ defines a partial metric on \mathbb{R}_+ . Other interesting examples of partial metric spaces can be found in [4, 10, 11]. It is known [8] that each partial metric p on X generates a T_0 topology τ_p on X which has as a base the family of open p-balls $\{B_p(x, \varepsilon) : x \in X, \varepsilon > 0\}$, where $B_p(x, \varepsilon)$ = $\{y \in X : p(x, y) < p(x, x) + \varepsilon\}$ for all $x \in X$ and $\varepsilon > 0$.

If p is a partial metric on X, then the function $p^s: X \times X \to \mathbb{R}_+$ given by $p^{s}(x,y)=2p(x,y)-p(x,x)-p(y,y)$

defines a metric on X (see [12]).

Let (X, p) be a partial metric space.

A sequence $\{x_n\}$ in a partial metric space (X, p) converges to a point $x \in X[4, 5, 8]$ if and only if $p(x,x)=\lim_{n\to\infty}p(x,x_n)$.

A sequence $\{x_n\}$ in a partial metric space (X, p) is called a Cauchy sequence [4, 5, 8] if there exists (and is finite) $\lim_{n,m\to\infty} p(x_n,x_m)$.

A partial metric space (X, p) is said to be complete [4, 5, 8] if every Cauchy sequence $\{x_n\}$ in X converges, with respect to τ_p , to a point $x \in X$ such that $p(x,x) = \lim_{n,m\to\infty} p(x_n,x_m)$.

It is evident that every closed subset of a complete partial metric space is complete.

Lemma 2 [4, 5, 8] *Let* (X, p) *be a partial metric space.*

- (1) $\{x_n\}$ is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence in the metric space (X, p^s) .
- (2) A partial metric space (X, p) is complete if and only if the metric space (X, p^s) is complete. Furthermore, $\lim_{n\to\infty} p^s(x_n,x)=0$ if and only if

 $p(x,x)=\lim_{n\to\infty}p(x_n,x)=\lim_{n,m\to\infty}p(x_n,x_m).$

Definition 3 [13] Let X be a nonempty set, m a positive integer and $f: X \to X$ an operator. By definition, $X = U_{i=1}^m X_i$ is a cyclic representation of X with respect to f if

- (i) X_i , i = 1,..., m are nonempty sets;
- (ii) $f(X_1) \subset X_2,..., f(X_{m-1}) \subset X_m, f(X_m) \subset X_1$.

e-ISSN: 2395 -0056 Volume: 03 Issue: 11 | Nov -2016 www.irjet.net p-ISSN: 2395-0072

Definition 4 [13] A function $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ is called a comparison function if it satisfies:

- (i) φ is monotone increasing, i.e., $t_1 \le t_2$ implies $\varphi(t_1) \le \varphi(t_2)$, for any $t_1, t_2 \in \mathbb{R}_+$;
- (ii) $(\varphi^n(t))_{n \in \mathbb{N}}$ converges to 0 as $n \to \infty$ for all $t \in \mathbb{R}_+$.

Definition 5 [13] A function $\varphi : \mathbb{R}_+ \to \mathbb{R}_+$ is called a (c)-comparison function if it satisfies:

- (i) φ is monotone increasing;
- (ii) there exist $k_0 \in \mathbb{N}$, $a \in (0,1)$ and a convergent series of nonnegative terms $\sum_{k=0}^{\infty} v_k$ such that $\varphi^{k+1}(t) \le \alpha \varphi^k(t) + v_k$, for $k \ge k_0$ and any $t \in \mathbb{R}_+$.

Lemma 6 [13] If $\varphi: \mathbb{R}_+ \to \mathbb{R}_+$ is a (c)-comparison function, then the following hold:

- (i) φ is a comparison function;
- (ii) $\varphi(t) < t$, for any $t \in \mathbb{R}_+$;
- (iii) φ is continuous at 0;
- (iv) the series $\sum_{k=0}^{\infty} \varphi^k(t)$ converges for any $t \in \mathbb{R}_+$.

In this article, we prove some fixed point theorems for generalized contractions defined on cyclic representation in the setting of partial metric spaces.

2 MAIN RESULTS:

Definition 7 Let (X,p) be a partial metric space. A mapping $f: X \to X$ is called a φ -contraction if there exists a comparison function $\varphi: \mathbb{R}_+ \to \mathbb{R}_+$ such that

$$p(f(x),f(y)) \leq \phi(p(x,y)) for \ all \ x,y \in X.$$

Definition 8 Let (X, p) be a partial metric space, m a positive integer, $A_1,...,A_m$ nonempty closed subsets of Xand $Y = II_{i-1}^m A_i$. An operator $f: Y \to Y$ is called a cyclic φ -contraction if

- (i) U_{i-1}^m A_iis a cyclic representation of Y w.r.t f;
- (ii) There exists a (c)-comparison function $\varphi: \mathbb{R}_+ \to \mathbb{R}_+$ such that
 - (2.1) $p(f(x),f(y)) \le \varphi(p(x,y))$ for any $x \in A_i$, $y \in A_{i+1}$, where $A_{m+1} = A_1$.

Volume: 03 Issue: 11 | Nov -2016

www.irjet.net

e-ISSN: 2395 -0056 p-ISSN: 2395-0072

Theorem 9 Let (X, p) be a complete partial metric space, m a positive integer, $A_1,...,A_m$ closed nonempty subsets of $X,Y = U_{i-1}^m A_i, \phi: R_+ \to R_+$ a (c)-comparison function and $f:Y \to Y$ an operator. Assume that

- (i) $U_{i=1}^m$ A_iis a cyclic representation of Y w.r.t f;
- (ii) f is a cyclic φ -contraction.

Then f has a unique fixed point $x^* \in U_{i=1}^m A_i$ and the Picard iteration $\{x_n\}$ converges to x^* for any initial point $x_0 \in Y$.

Proof. Let $x_0 \in Y = U_{i=1}^m A_i$, and set

$$x_n = f(x_{n-1}), n \ge 1.$$

For any $n \ge 0$ there is $i_n \in \{i, ..., m\}$ such that $x_n \in A_{i_n}$ Ain and $x_{n+1} \in A_{i_{n+1}}$. Then by (2.1) we have $p(x_n, x_{n+1}) = p(f(x_{n-1}), f(x_n)) \le \phi(p(x_{n-1}, x_n))$.

Since φ is monotone increasing, we get by induction that

(2.2)
$$p(x_n,x_{n+1}) \le \varphi^n(p(x_0,x_1)).$$

By definition of φ , thus letting $n \to \infty$ in (2.2), we obtain that

$$\lim_{n\to\infty}p(x_n,x_{n+1})=0.$$

On the other hand, since

$$p(x_n,x_n) \le p(x_n,x_{n+1})$$
 and $p(x_{n+1},x_{n+1}) \le p(x_n,x_{n+1})$,

then from (2.2) we have

$$(2.3) \quad p(x_n,x_n) \le \varphi^n(p(x_0,x_1)) \text{ and } p(x_{n+1},x_{n+1}) \le \varphi^n(p(x_0,x_1)).$$

Thus, we have

$$p^{s}(x_{n},x_{n+1}) \le 4\phi^{n}(p(x_{0},x_{1})).$$

Since φ is a (c)-comparison function, from Lemma 6, it follows that

$$\lim_{n\to\infty} p^s(x_n,x_{n+1})=0.$$

So for $k \ge 1$, we have

$$p^{s}(x_{n},x_{n+k}) \le p^{s}(x_{n},x_{n+1}) + \dots + p^{s}(x_{n+k-1},x_{n+k}) \le 4 \sum_{m=n}^{n+k-1} \varphi^{m}(p(x_{0},x_{1})).$$

Again since φ is a (c)-comparison function, by Lemma 6, it follows that

$$\sum_{m=0}^{\infty} \varphi^m(p(x_0, x_1)) < \infty.$$

This implies that $\{x_n\}$ is a Cauchy sequence in the metric subspace (Y, p^s) . Since Y is closed, the subspace (Y, p) is complete. Then from Lemma 2, we have that (Y, p^s) is complete. Let $\lim_{n\to\infty} p^s(x_n,y)=0$.

Now Lemma 2 further implies that

$$(2.4) \quad p(y,y) = \lim_{n \to \infty} p(x_n,y) = \lim_{n,m \to \infty} p(x_n,x_m).$$

Volume: 03 Issue: 11 | Nov -2016

Therefore, since $\{x_n\}$ is a Cauchy sequence in the metric space (Y, p^s) , it implies that $\lim_{n,m\to\infty} p^s(x_n,x_m)=0$. Also from (2.3) we have $\lim_{n\to\infty} p(x_n,x_n)=0$, and using the definition of p^s we obtain $\lim_{n,m\to\infty} p(x_n,x_m)=0$. Consequently, from (2.4) we have

$$p(y,y)=\lim_{n\to\infty}p(x_n,y)=\lim_{n,m\to\infty}p(x_n,x_m)=0.$$

As a result, $\{x_n\}$ is a Cauchy sequence in the complete partial metric subspace (Y, p), and it is convergent to a point $y \in Y$.

On the other hand, the sequence $\{x_n\}$ has an infinite number of terms in each A_i , i = 1,...,m. Since (Y, p) is complete, in each A_i , i = 1,..., m, we can construct a subsequence of $\{x_n\}$ which converges to y. Since A_i , i = 1,..., m1,..., m are closed, we see that

$$\bigcap_{i=1}^{m} A_i$$
; i.e.,

$$\bigcap_{i=1}^m A_i \neq \emptyset. \text{ Now we can consider the restriction } f \mid \bigcap_{i=1}^m A_i : \bigcap_{i=1}^m A_i \to \bigcap_{i=1}^m A_i ,$$

which satisfies the conditions of Theorem 1 in $[\underline{5},\underline{6}]$, since $\bigcap_{i=1}^m A_i$ is also closed and complete. Thus $f \mid \bigcap_{i=1}^m A_i$ has a unique fixed point, say $x^* \in f \mid \bigcap_{i=1}^m A_i$. We claim that for any initial value $x \in Y$, we get

the same limit point $x^* \in f \mid \bigcap_{i=1}^m A_i$. Indeed, for $x \in Y = \bigcup_{i=1}^m A_i$, by repeating the above process, the

corresponding iterative sequence yields that $f \mid \bigcap_{i=1}^m A_i$ has a unique fixed point, say $z \in \bigcap_{i=1}^m A_i$. Regarding

that $x^*,z \in \bigcap_{i=1}^m A_i$, we have $x^*z \in A_i$ for all i, hence $p(x^*,z)$ and $p(f(x^*),f(z))$ are well defined. Due to (2.1), we have

$$p(x^*,z)=p(f(x^*),f(z))\leq \phi(p(x^*,z)),$$

which is a contradiction. Thus, x^* is a unique fixed point of f for any initial value $x \in Y$.

To prove that the Picard iteration converges to x^* for any initial point $x \in Y$. Let $x \in Y = \bigcup_{i=1}^{m} A_i$. There exists $i_0 \in \{1,..., m\}$ such that $\mathbf{x} \in A_{i_0}$. As $\mathbf{x}^* \in \bigcap_{i=1}^m A_i$ it follows that $\mathbf{x}^* \in A_{i_{0}+1}$ as well. Then we obtain:

$$p(f(x),f(x^*)) \leq \phi(p(x,x^*)).$$

By induction, it follows that: $p(f^n(x),x^*) \le \varphi^n(p(x,x^*)),n \ge 0$. Sincep $(x^*,x^*) \le p(f^n(x),x^*)$, we havep $(x^*,x^*) \le \varphi^n(p(x,x^*))$.

e-ISSN: 2395 -0056

p-ISSN: 2395-0072

e-ISSN: 2395 -0056 p-ISSN: 2395-0072

Now letting $n \to \infty$, and supposing $x \neq x^*$, we have $p(x^*,x^*)=\lim_{n\to\infty} p(f^n(x),x^*)=0$.

i.e., the Picard iteration converges to the unique fixed point of f for any initial point $x \in Y$.

Theorem 10 *Let* $f:Y \rightarrow Y$ *as in Theorem* 9. *Then*

Volume: 03 Issue: 11 | Nov -2016

 $\sum_{n=0}^{\infty} p(f^n(x), f^{n+1}(x)) < \infty \text{,for any } x \in Y \text{, i.e., } f \text{ is a good Picard operator.}$

Proof. Let $x = x_0 \in Y$. Thenp $(f^n(x_0), f^{n+1}(x_0)) = p(x^n, x^{n+1}) \le \phi^n(p(x_0, x_1))$. for all $n \in \mathbb{N}$ Thus, by Lemma 6, we have

$$\sum_{n=0}^{\infty} p(f^{n}(x_{0}), f^{n+1}(x_{0})) \leq \sum_{n=0}^{\infty} \varphi^{n}(p(x_{0}, x_{1})) < \infty,$$

since $p(x_0, x_1) > 0$. So, f is a good Picard operator.

Theorem 11 Let $f:Y \to Y$ as in Theorem 9. Then $\sum_{n=0}^{\infty} p(f^n(x), x^*) < \infty$,

for any $x \in Y$, i.e., f is a special Picard operator.

Proof. Sincep $(f^n(x),x^*) \le \varphi^n(p(x,x^*)),n \ge 0$

holds for any $x \in Y$, by Lemma 6, we have $\sum_{n=0}^{\infty} p(f^n(x), x^*) \le \sum_{n=0}^{\infty} \varphi^n(p(x_0, x_1)) < \infty$.

This shows that *f* is a special Picard operator.

References:

- 1. Kannan R: Some results on fixed points. *Bull Calcutta Math Soc* 1968, 60: 71–76.
- 2. Reich S: Kannan's fixed point theorem. *Boll Unione Mat Ital* 1971, 4(4):1–11.
- 3. Matkowski J: Fixed point theorems for mappings with a contractive iterate at a point. *Proc Amer Math Soc* 1977, 62(2):344–348. 10.1090/S0002-9939-1977-0436113-5
- 4. Matthews SG: Partial metric topology. Papers on General Topology and Applications (Flushing, NY, 1992). *Ann New York AcadSci* 1994, 728: 183–197. 10.1111/j.1749-6632.1994.tb44144.x
- 5. Altun I, Sola F, Simsek H: Generalized contractions on partial metric spaces. *TopolAppl* 2010, 157: 2778–2785. 10.1016/j.topol.2010.08.017

Volume: 03 Issue: 11 | Nov -2016 www.irjet.net

e-ISSN: 2395 -0056 p-ISSN: 2395-0072

- 6. Altun I, Sadarangani K: Corrigendum to generalized contractions on partial metric spaces. *TopolAppl* 2011, 158: 1738–1740. [Topol. Appl. 157, 2778–2785 (2010)] 10.1016/j.topol.2011.05.023
- 7. Di Bari C, Vetro P: Fixed points results for weak φ contractions on partial metric spaces. *Int J EngContemp Math Sci* 2011. (to appear)
- 8. Valero O: On Banach fixed point theorems for partial metric spaces. *Appl Gen Topol* 2005, 6(2):229–240.
- 9. CiricLj, Samet B, Aydi H, Vetro C: Common fixed points of generalized contractions on partial metric spaces and an application. *Appl Math Comput* 2011, 218: 2398–2406. 10.1016/j.amc.2011.07.005
- 10. Escardo MH: Pcf extended with real numbers. *TheorComputSci* 1996, 162: 79–115. 10.1016/0304-3975(95)00250-2
- 11. Schellekens M: The smyth completion: a common foundation for denonational semantics and complexity analysis. *Proc Mathematical foundations of programming semantics (New Orleans, LA 1995), Electronic Notes in Theoretical Computer Science* 1995, 1: 211–232.
- 12. Oltra S, Valero O: Banach's fixed point theorem for partial metric spaces. *Rend Istit Mat Univ Trieste* 2004, 36: 17–26.
- 13. Păcurar M, Rus IA: Fixed point theory for cyclic φ -contractions. *Nonlinear Anal* 2010, 72(4–3):1181–1187.