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Abstract 

In this article, we give some fixed point theorems for mappings satisfying cyclical generalized contractive 
conditions in complete partial metric spaces. 
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1 INTRODUCTION: 

The well knownBanach's fixed point theorem asserts that: If (X, d) is a complete metric space 
and f : X → X is a mapping such that 

d(f(x),f(y))≤λd(x,y) 

for all x, y ∈ X and some λ ∈ [0,1), then f has a unique fixed point in X. Kannan [1] extended Banach's fixed 
point theorem to the class of maps f : X → X satisfying the following contractive condition: 

d(f(x),f(y))≤λ[d(x,f(x))+d(y,f(y))] 

for all x, y ∈ X and some λ ∈ (0,1/ 2). Reich [2] generalized both results using the contractive condition: 
d(f(x),f(y))≤αd(x,y)+βd(x,f(x))+γd(y,f(y)) 

for each x, y ∈ X, where α, β, γ are nonnegative real numbers statisfying α + β + γ < 1. 

Matkowski [3] used the following contractive condition: 
d(f(x),f(y))≤φ(d(x,y)) 

for all x, y ∈ X, where φ : ℝ+ → ℝ+ is a nondecreasing function such that limn→∞φn(t)=0 for all t > 0. 
In 1994, Matthews [4] introduced the notion of a partial metric space and obtained a generalization of 
Banach's fixed point theorem for partial metric spaces. Recently, Altun et al. [5] (see also Altun and 
Sadarangani [6]) gave some generalized versions of the fixed point theorem of Matthews [4]. Di Bari and 
Vetro [7] obtained some results concerning cyclic mappings in the framework of partial metric spaces. 
We recall below the definition of partial metric space and some of its properties (see [4, 5, 8, 9]). 

Definition 1 A partial metric on a nonempty set X is a function p : X × X → ℝ+ such that for all x, y, z, ∈ X: 

p1: x = y ⇔ p (x, x) = p (x, y) = p (y, y), 
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p2:  p (x, x) ≤ p(x, y), 

p3: p(x, y) = p(y, x), 

p4: p(x, y) ≤ p(x, z) + p(z, y) - p(z, z). 

A partial metric space is a pair (X, p) where X is a nonempty set and p is a partial metric on X. The 
function p (x, y) = max{x, y} for all x, y ∈ ℝ+ defines a partial metric on ℝ+. Other interesting examples of 
partial metric spaces can be found in [4, 10, 11]. It is known [8] that each partial metric p on X generates 
a T0 topology τ p on X which has as a base the family of open p-balls {B p (x, ε) : x ∈ X, ε > 0}, where B p (x, ε) 
= {y ∈ X : p (x, y) < p (x, x) + ε} for all x ∈ Xand ε > 0. 

If p is a partial metric on X, then the function p s : X × X → ℝ+ given by 
ps(x,y)=2p(x,y)−p(x,x)−p(y,y) 

defines a metric on X (see [12]). 

Let (X, p) be a partial metric space. 

A sequence {x n } in a partial metric space (X, p) converges to a point x ∈ X [4, 5, 8] if and only 
if p(x,x)=limn→∞p(x,xn). 
A sequence {x n } in a partial metric space (X, p) is called a Cauchy sequence [4, 5, 8] if there exists (and is 
finite) limn,m→∞p(xn,xm). 
A partial metric space (X, p) is said to be complete [4, 5, 8] if every Cauchy sequence {x n } in X converges, 
with respect to τ p , to a point x ∈ X such that p(x,x)=limn,m→∞p(xn,xm). 
It is evident that every closed subset of a complete partial metric space is complete. 

Lemma 2 [4, 5, 8] Let (X, p) be a partial metric space. 

(1){x n } is a Cauchy sequence in (X, p) if and only if it is a Cauchy sequence in the metric space (X,p s ). 

 (2)A partial metric space (X, p) is complete if and only if the metric space (X, p s ) is complete. 
Furthermore, limn→∞ps(xn,x)=0 if and only if 
p(x,x)=limn→∞p(xn,x)=limn,m→∞p(xn,xm). 
Definition 3 [13] Let X be a nonempty set, m a positive integer and f : X → X an operator. By 

definition, X=U
m

i 1
Xi is a cyclic representation of X with respect to f if 

(i) X i , i = 1,..., m are nonempty sets; 

(ii) f (X1) ⊂ X2,..., f (Xm- 1) ⊂ X m , f (X m ) ⊂ X1. 
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Definition 4 [13] A function φ : ℝ+ → ℝ+ is called a comparison function if it satisfies: 

(i) φ is monotone increasing, i.e., t1 ≤ t2 implies φ (t1) ≤ φ(t2), for any t1,t2 ∈ ℝ+; 

(ii) (φ n (t))n ∈ ℕconverges to 0 as n → ∞ for all t ∈ ℝ+. 

Definition 5 [13] A function φ : ℝ+ → ℝ+ is called a (c)-comparison function if it satisfies: 

(i) φ is monotone increasing; 

(ii) there exist k0 ∈ ℕ, a ∈ (0,1) and a convergent series of nonnegative terms 


1k

kv  such that 

φk+1(t)≤αφk(t)+vk,for k ≥ k0 and any t ∈ ℝ+. 

Lemma 6 [13] If φ : ℝ+ → ℝ+ is a (c)-comparison function, then the following hold: 

(i) φ is a comparison function; 

(ii) φ(t) < t, for any t ∈ ℝ+; 

(iii) φ is continuous at 0; 

(iv) the series 


0

)(
k

k t  converges for any t ∈ ℝ+. 

In this article, we prove some fixed point theorems for generalized contractions defined on cyclic 
representation in the setting of partial metric spaces. 

2 MAIN RESULTS: 

Definition 7 Let (X,p) be a partial metric space. A mapping f : X → X is called a φ-contraction if there exists 
a comparison function φ : ℝ+ → ℝ+ such that 

p(f(x),f(y))≤φ(p(x,y))for all x, y ∈ X. 

Definition 8 Let (X, p) be a partial metric space, m a positive integer, A1,..., A m nonempty closed subsets of X 

and Y=U
m

i 1
Ai. An operator f : Y → Y is called a cyclic φ-contraction if 

(i) U
m

i 1
Aiis a cyclic representation of Y w.r.t f; 

(ii) There exists a (c)-comparison function φ : ℝ+ → ℝ+ such that 
(2.1)  p(f(x),f(y))≤φ(p(x,y))for any x ∈ A i , y ∈ Ai+1, where Am+1= A1. 
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Theorem 9 Let (X, p) be a complete partial metric space, m a positive integer, A1,..., A m closed nonempty 

subsets of X,Y=U
m

i 1
Ai,φ:R+→R+ a (c)-comparison function and f :Y → Y an operator. Assume that 

(i) U
m

i 1
Aiis a cyclic representation of Y w.r.t f ; 

(ii) f is a cyclic φ-contraction. 

Then f has a unique fixed point x∗∈U
m

i 1
Ai and the Picard iteration {x n } converges to x* for any initial 

point x0 ∈Y. 

Proof. Let x0∈Y=U
m

i 1
Ai, and set 

xn=f(xn−1),n≥1. 

For any n ≥ 0 there is i n ∈ {i, ..., m} such that xn∈
n

iA Ain and xn+1∈
1n

iA . Then by (2.1) we have 

p(xn,xn+1)=p(f(xn−1),f(xn))≤φ(p(xn−1,xn)). 

Since φ is monotone increasing, we get by induction that 
(2.2)  p(xn,xn+1)≤φn(p(x0,x1)). 

By definition of φ, thus letting n → ∞ in (2.2), we obtain that 
limn→∞p(xn,xn+1)=0. 

On the other hand, since 
p(xn,xn)≤p(xn,xn+1)andp(xn+1,xn+1)≤p(xn,xn+1), 

then from (2.2) we have 
(2.3)  p(xn,xn)≤φn(p(x0,x1))andp(xn+1,xn+1)≤φn(p(x0,x1)). 

Thus, we have 
ps(xn,xn+1)≤4φn(p(x0,x1)). 

Since φ is a (c)-comparison function, from Lemma 6, it follows that 
limn→∞ps(xn,xn+1)=0. 

So for k ≥ 1, we have 

ps(xn,xn+k)≤ps(xn,xn+1)+⋯+ps(xn+k−1,xn+k)≤4 )),((
1

10




kn

nm

m xxp . 

Again since φ is a (c)-comparison function, by Lemma 6, it follows that 






)),((
0

10

m

m xxp . 

This implies that {x n } is a Cauchy sequence in the metric subspace (Y, p s ). Since Y is closed, the subspace 
(Y, p) is complete. Then from Lemma 2, we have that (Y, p s ) is complete. Let 
limn→∞ps(xn,y)=0. 

Now Lemma 2 further implies that 
(2.4)  p(y,y)=limn→∞p(xn,y)=limn,m→∞p(xn,xm). 
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Therefore, since {x n } is a Cauchy sequence in the metric space (Y, p s ), it implies that limn,m→∞ps(xn,xm)=0. 
Also from (2.3) we have limn→∞p(xn,xn)=0, and using the definition of p s we obtain limn,m→∞p(xn,xm)=0. 
Consequently, from (2.4) we have 

p(y,y)=limn→∞p(xn,y)=limn,m→∞p(xn,xm)=0. 

As a result, {x n } is a Cauchy sequence in the complete partial metric subspace (Y, p), and it is convergent 
to a point y ∈ Y. 

On the other hand, the sequence {x n } has an infinite number of terms in each A i , i = 1,...,m. Since (Y, p) is 
complete, in each A i , i = 1,..., m, we can construct a subsequence of {x n } which converges to y. Since A i , i = 
1,..., m are closed, we see that 


m

i

iA
1

;i.e., 


m

i

iA
1

≠∅. Now we can consider the restriction f ∣
m

i

iA
1

:
m

i

iA
1

→
m

i

iA
1

, 

which satisfies the conditions of Theorem 1 in [5, 6], since 
m

i

iA
1

is also closed and complete. 

Thus f ∣
m

i

iA
1

has a unique fixed point, say x∗∈ f ∣
m

i

iA
1

. We claim that for any initial value x ∈ Y, we get 

the same limit point x∗∈ f ∣
m

i

iA
1

. Indeed, for x∈Y=
m

i

iA
1

, by repeating the above process, the 

corresponding iterative sequence yields that f ∣
m

i

iA
1

 has a unique fixed point, say z∈
m

i

iA
1

. Regarding 

that x∗,z∈
m

i

iA
1

, we have x* z ∈ A i for all i, hence p (x*, z) and p (f (x*), f (z)) are well defined. Due to (2.1), 

we have 
p(x∗,z)=p(f(x∗),f(z))≤φ(p(x∗,z)), 

which is a contradiction. Thus, x* is a unique fixed point of f for any initial value x ∈ Y. 

To prove that the Picard iteration converges to x* for any initial point x ∈ Y. Let x∈Y=
m

i

iA
1

. There 

exists i0 ∈{1,..., m} such that x∈
0

iA . As x∗∈
m

i

iA
1

it follows that x∗∈
10 iA  as well. Then we obtain: 

p(f(x),f(x∗))≤φ(p(x,x∗)). 

By induction, it follows that:p(fn(x),x∗)≤φn(p(x,x∗)),n≥0. 
Sincep(x∗,x∗)≤p(fn(x),x∗), 
we havep(x∗,x∗)≤φn(p(x,x∗)). 
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Now letting n → ∞, and supposing x ≠ x*, we have 
p(x∗,x∗)=limn→∞p(fn(x),x∗)=0, 

i.e., the Picard iteration converges to the unique fixed point of f for any initial point x ∈ Y. 

Theorem 10 Let f :Y → Y as in Theorem 9. Then 








0

1 ))(),((
n

nn xfxfp ,for any x ∈ Y, i.e., f is a good Picard operator. 

Proof. Let x = x 0 ∈ Y. Thenp(fn(x0),fn+1(x0))=p(xn,xn+1)≤φn(p(x0,x1)). 
for all n ∈ ℕ Thus, by Lemma 6, we have 








0

0

1

0 ))(),((
n

nn xfxfp ≤ 


0

10 )),((
n

n xxp , 

since p(x0, x1) > 0. So, f is a good Picard operator. 

Theorem 11 Let f :Y → Y as in Theorem 9. Then 


0

*))),((
n

n xxfp , 

for any x ∈ Y, i.e., f is a special Picard operator. 

Proof. Sincep(fn(x),x∗)≤φn(p(x,x∗)),n≥0 

holds for any x ∈ Y, by Lemma 6, we have


0

*)),((
n

n xxfp ≤ 


0

10 )),((
n

n xxp . 

This shows that f is a special Picard operator. 
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