
          International Research Journal of Engineering and Technology (IRJET)      e-ISSN: 2395 -0056 

               Volume: 03 Issue: 11 | Nov -2016                      www.irjet.net                                                               p-ISSN: 2395-0072 

 

© 2016, IRJET       |       Impact Factor value: 4.45        |       ISO 9001:2008 Certified Journal       |        Page 793 
 

Perceptual Difference for Safer Continuous Delivery 

Ankit Ramakrishnan, Dr. Manjula R 

Undergraduate, School of Computer Science and Engineering, VIT University, Vellore, Tamil Nadu, India 
Professor, School of Computer Science and Engineering, VIT University, Vellore, Tamil Nadu, India  

 

---------------------------------------------------------------------***---------------------------------------------------------------------

Abstract - Perceptual Difference is a proposed continuous 
integration tool to enable safer Continuous Delivery. Existing 
Continuous Delivery tools used for automated testing of Web 
Applications are inherently dependent on code based testing 
that uses algorithmic testing and is devoid of human 
perception.  Perceptual Difference combines concepts of 
Computer Vision and CI to enable recognition of UI/View 
based changes, assisting human testers to check development 
branches with added scrutiny before deploying the 
application. 

 
Key Words:  Continuous Delivery; Perceptual Difference; 
Automated Testing 

1. INTRODUCTION 
 

Continuous Delivery and Continuous Integration are 
common Software Engineering Paradigms used in the 
Software Industry. They rely on a set of processes and 
workflows that enable multiple programmers or developers 
to access the Codebase and submit changes and revisions. 
Continuous Delivery (CD) is a superset of Continuous 
Integration (CI). Every change on the Codebase is 
immediately deployed to production in CD after terse and 
often very stringent testing and approval mechanism. Most 
Penultimate processes in CD Involve testing and approval. As 
a result of CI practices, Testing is majorly automated and 
requires little to no human intervention. Testing is usually 
followed by Quality Assurance (QA) which entails approval of 
the currently staged branch of the Codebase. Perceptual 
Difference (Perceptual Diff) is intended to reduce this QA 
time by assisting in identifying changes in the UI. This enables 
faster and safer CD. 

The main aim of this methodology is to increase reliability 
of automated tests. This will greatly increase speed and 
accuracy of user acceptance tests, thus, resulting in faster 
deployment rates. Faster release cycles are essential in a 
market with increasing number of competitive agents that 
are forever on the lookout for stumbles that a vendor makes 
in an attempt to gain market share from their competitor’s 
loss. 

We shall focus on key aspects of perceptual image 
difference, CD integrations and other metrics to determine 
the efficiency of the proposed tool. 

 
 

 

2. CONTINUOUS DELIVERY 
 
Continuous Delivery as defined by the Agile Alliance is an 
extension of the Continuous Integration methodology (CI) 
that tries to reduce the cycle-time (lead time), which is the 
time taken for a line of code written in development to be 
used in the live version of a product which is targeted to 
users. CD methods often involve the creation of Delivery and 
Deployment Pipelines which are a series of integrations from 
the point of authoring code to the final deployment to a 
production environment. 
These Integrations form the basis for Continuous Integration 
(CI). In multi author projects that have a large number of 
developers that have access to the development branch of the 
project, it is necessary to have integration mechanisms in 
place such that no single merge can compromise the state of 
the production branch. 
 

 
Fig-1: Anatomy of the Deployment Pipeline [1][2] 
 

2.1 Continuous Integration 
 

CI in the above scenario become absolutely necessary. CI 
entails that the developers on the developer branch merge 
their code to the main repository at regular intervals. After 
merging this code a variety of build and test automation tasks 
are performed to ensure build integrity. A CI pipeline is 
usually centrally coordinated with a CI Server. Every revision 
of the codebase triggers a central build test for that revision. 
If approved the revision is merged with the 
staging/production branch. If the tests or the build process 



          International Research Journal of Engineering and Technology (IRJET)      e-ISSN: 2395 -0056 

               Volume: 03 Issue: 11 | Nov -2016                      www.irjet.net                                                               p-ISSN: 2395-0072 

 

© 2016, IRJET       |       Impact Factor value: 4.45        |       ISO 9001:2008 Certified Journal       |        Page 794 
 

fail the revision is marked as a “fail” and the developer is 
notified. 

2.2 Build Automation 
 

Build Automations is an integral aspect of CD 
methodology. It refers to self-contained environments that 
perform tasks of building from source in a deterministic and 
consistent manner.  

Developer Local Environments do provide a simple 
benchmark for building projects but are woefully 
inconsistent across platforms. They thus don’t give us a global 
picture of build failure with respect to the live deployment. 
Users may have different systems and configurations that 
might react differently to the product. 

Automation ensures a build consistency that is not 
observed on Developer Machines. A build automation agent 
or server is a central server that can be – 

2.2.1. On Demand – Build is performed when required by 
the developer and has to be manually run. 

2.2.2. Scheduled – The build process is scheduled ahead of 
time, similar to regular merges in the Source Code 
Repository. 

2.2.3. Triggered – Triggered automation is the most 
powerful form of build automation as it is triggered 
whenever there is a change on the main SCM. 

Build automation tools are necessary for CD to produce 
reliable binaries ready for production. 

2.3 Test Automation 
 

Testing a build is essential before deployment. However, a 
lot of regressing and unit tests are highly time consuming and 
can cause delays in the lead time estimates of production. 
This can however be avoided by automating testing by 
utilizing the repetitive nature of testing. Unit tests can be 
written prior to testing and run in bulk by a Test Automation 
Server. The server is responsible for providing stakeholders 
with data associated with test completion or failure.  

Most popular TA frameworks provide a simple scripting 
language to control the tests themselves and architecting 
them. Continuous Testing is a subset of TA that is similar to CI 
and CD and involves running testing tasks as part of the CD 
pipeline and thus getting immediate feedback on the risks 
associated with the current build. 

 

Fig- 2: Flow diagram for the CD Pipeline [3] 
 

3. Current Tools 
 
3.1 Jenkins 
 

Jenkins is a very popular and powerful CI Server that is 
used by almost all industry giants to orchestrate their 
software delivery pipeline. 

Jenkins was originally part of the Hudson Project at Sun 
Microsystems but later due to issues with the company 
Kohsuke Kawaguchi released the product separately as the 
Jenkins CI Server. It is written entirely in Java and is 
completely open source. The Jenkins Automation Server 
Boasts of powerful integrations with most databases and 
SCMs such as Git or SVN. It can be integrated with build tools 
like Maven or Gradle. As a result of the open source nature of 
the project Jenkins has a rick plugin ecosystem that is 
continuously updated and maintained by its contributors. It 
can be extended and modified as and when needed by the 
organization. It has a friendly web-based GUI interface to 
enable on the fly configurations with little to no code 
experience.  

Error reporting in Jenkins is very user friendly and provides 
users with inline help. 

 

3.2 Gradle and Maven 
 

Gradle is an open source build automation tool written in 
Java and Groovy. It was designed for multi project builds that 
have large dependency trees that can be hard to keep track if 
build is performed manually across platforms and machines. 
Gradle uses acyclic graphs to emulate build tasks and each 
subsequent task depends on the output of the last. It was 
originally a build tool for Java, Groovy and Scala. Currently it 
supports 60 different programming languages and 
environments including but not limited to C/C++, Python, 
Android, and iOS. Gradle is proficient in handling multiple 
dependencies that are described in a variety of formats such 
as Ant, Maven or Ivy. 

The Acyclic nature of the tool helps incremental builds 
that can result in sequential build artefacts that can later be 
sent to distributed test automation servers. Build Caching is 



          International Research Journal of Engineering and Technology (IRJET)      e-ISSN: 2395 -0056 

               Volume: 03 Issue: 11 | Nov -2016                      www.irjet.net                                                               p-ISSN: 2395-0072 

 

© 2016, IRJET       |       Impact Factor value: 4.45        |       ISO 9001:2008 Certified Journal       |        Page 795 
 

another powerful feature of Gradle that entails building only 
parts of the project that have cone revisions or change. 

Maven or Apache Maven is another build automation tool 
used for projects. Similar to Gradle it supports integrations 
with local or online artefact repositories. Maven describes the 
configuration of the project in XML format called the POM or 
the Project Object Model. The POM keeps track of the plugins 
and libraries used by the project and necessary for building. 

3.3 Selenium 
 

Selenium is a web browser automation tool that is used 
for testing Web Applications by emulating user interactions 
like touches and input. Selenium is written in Java and utilizes 
a WebDriver. The WebDriver starts browser instances with 
the desired application running on it and sends commands to 
it depending on the test specifications that can be provided in 
a variety of languages. Selenium has bindings in almost every 
major language like C/C++/Python. 

Table -1: Sample Table format 
 
 

4. WEB APPLICATIONS 
 

Web applications are currently on the rise and 
undoubtedly the most popular form of applications. They 
utilize the browser as a deployment vector and users view 
and interact with these applications via the browser itself 
without the need of downloading an external desktop 
application which is usually bulkier. Web apps are known for 
their increased accessibility and cross-platform nature. 
Different applications are not needed to be made for different 
platforms as in the case of Desktop Applications where 
different OSes require different binary formats, libraries and 
languages. Web applications cut through this clutter by 
streamlining the deployment strictly to web browsers. 

Their user acceptance is usually guided by interfaces and 
front end interactions. Most popular websites invest a lot of 
time and capital on designing and modifying their interfaces 
so as to attract more users and/or customers. The User 
Interface Design and Development is a key component in the 
software development stage. It involves specifying the layout, 
the design and the interactivity of the web application. 

Common tools used to accomplish this are – 

4.0.1. HTML for layout specification 

4.0.2. CSS for designing the appearance 

 4.0.3. JavaScript for enabling interactions 

4.1 Development 
 

Modern web applications use a variety of architectures of 
which the MVC architecture is the most common. Front end 
frameworks such as Angular, React, EmberJS and JQuery are 
used to make rich Single Page Applications. 

 

4.2 Testing 
 

With the introduction of Selenium WebDriver and similar 
technology writing tests for web applications has been 
immensely simplified. The developer specifies unit tests that 
need to be performed on the application and the Selenium 
WebDriver automates these Use Cases and provides the 
output to the tester.  

While Selenium only caters to Functional and End to End 
testing. Web apps need to undergo the following testing 
methodologies as well – 

4.2.1. Functional Testing – This entails that all the 
hyperlinks, forms, buttons, database connections are working 
properly in the web application. Testing links would include 
testing all the internal link jumps, external link jumps, check 
email links and check for orphan pages. 

4.2.3. Usability Testing – This is the test which ensure that 
navigation in the web application is according to the set of 
rules provided by the developer and works accordingly. 
Usability includes navigation controls and other application 
components that perform view changes. 

4.2.4. Interface Testing – This test is to ensure the 
interface between the web server or the backend is working 
in tandem with the front end or the view. It makes sure that 
error messages are correctly reported at the backend in case 
anything goes wrong. 

4.2.5. Compatibility Testing – This test makes sure the app 
performs consistently across browsers ad platforms. It keeps 
note of JavaScript incompatibilities of certain browsers and 
tests these specific functions of the web app on the specific 
browser versions. 

4.2.6. Performance Testing – This test is divided into load 
ad stress testing. Load testing involves assessing if the 
application can handle large quantities of user traffic and 
analyzing its limits. Stress testing takes the application to its 
specified limits and observes how the application recovers 
from a stress case scenario like a crash for example. 

5. DRAWBACKS OF CURRENT FRAMEWORKS 
 

Current web frameworks like Selenium do an excellent 
job of automating most repetitive tasks performed while 
testing a web application like checking link status and 
navigation but they are essentially blind to the interface. 

Selenium does have support for CSS Selectors but this 
does not enable it to directly observe or understand the 
changes that occur in a page as a result of CSS code change. It 
also is content agnostic. This means typos and omissions in 
the content are not given priority or are not reported entirely.  

For example, in the landing page of a major company if the 
company copywriter decides to make some changes to the 
“about” page then the content change of this revision in code 
will no trigger any fails in the test automation stage. The 
tester can manually write content tests for each piece of 
content but this would be too inefficient and time consuming. 



          International Research Journal of Engineering and Technology (IRJET)      e-ISSN: 2395 -0056 

               Volume: 03 Issue: 11 | Nov -2016                      www.irjet.net                                                               p-ISSN: 2395-0072 

 

© 2016, IRJET       |       Impact Factor value: 4.45        |       ISO 9001:2008 Certified Journal       |        Page 796 
 

Alternatively, if the designers of the web page decide to 
change the orientation or alignment of components then they 
would effectively have to change the CSS code. These minor 
changes would define pixel positions and sizes. Again, test 
frameworks are view agnostic and only test rendered DOM 
code. This means any view specifications would ha ve to be 
hard coded in the test suite and as mentioned above would be 
woefully time consuming. The goal of automation is to reduce 
time needed for testing applications. The above scenarios 
have made certain that current automation technologies 
cannot identify or differentiate minor interface changes. That 
is, they are view agnostic.  

Perceptual Difference is the proposed solution which 
enables the tool to see the changes that occur on a page 
visually and flags the page as high priority for manual QA and 
User Acceptance Testing. 

6. IMAGE DIFFERENCE 
 

To analyze changes in a given source image it is sufficient 
to calculate the image difference of this image with the target 
image given the compression algorithm is lossless. 

Image Difference is a simple Image Processing technique 
that involves subtracting one image from the other. This 
process is very useful in identifying changes in an image. 

For example, 

 

Fig- 3: Original Wikipeida Homepage 

 
Fig- 4 : Changed Wikipedia Homepage 

 

 

Fig- 1: Image Difference 
 

The above example shows how minor changes in the 
homepage are not easily registered visually when viewed by 
the manual tester but can be clearly identified once image 
difference is applied.  

The first image has a glow around the text field and also 
has Deutsch as the second highest number of articles. 
Whereas the modified homepage has Hindi listed as the same. 
This change is not very obvious to a manual tester. However 
to a computer after applying the Image Difference algorithm 
the change is very apparent and it can be at once said that 
there has been a change and the changes can be tagged 
allowing the manual tester to test the page with more 
scrutiny. 

7. P-DIFF 
 

pDiff is the proposed tool to integrate image differences 
into the CD pipeline. As interface changes are hard to 
manually keep track of via code, pDiff adopts the more 
intuitive solution of storing screenshots of the live and staged 
versions. The screenshots vary depending on the URL, build 
number, and JavaScript interaction. 



          International Research Journal of Engineering and Technology (IRJET)      e-ISSN: 2395 -0056 

               Volume: 03 Issue: 11 | Nov -2016                      www.irjet.net                                                               p-ISSN: 2395-0072 

 

© 2016, IRJET       |       Impact Factor value: 4.45        |       ISO 9001:2008 Certified Journal       |        Page 797 
 

After the CI Server has green flagged the current revisions 
and a new build is generated, the new build is immediately 
captured by the pDiff tool and individual screenshots of all 
the screens are taken. All the URLs in the config file are 
traversed and the images are stored with the release number. 
These image differences are marked with a percentage of 
difference which is a reference to the amount of apparent 
change in the product. The complete pDiff review of the 
current release is then available for the Manual Tester, QA 
Personnel to check. With visual cues provided to help the 
tester, it is guaranteed that even minor mistakes or changes 
in these applications will stand out and garner more attention 
of the tester. 

 

The revisions are stored in the given format – 

Table- 1: pDiff Representation Format 
 

Id Image 

Reference 
    

 

Run 

 

Diff 

 

 
7.1 Establishing a Baseline 
 

To use pDiff effectively or to integrate it into the current 
development methodology it is essential to add a baseline to 
the currently built application. This entails pDiff crawling 
through the live version and storing the screenshots with the 
date and time recorded for easy indexing. 

7.2 Creating a New Release 
 

Each time a new release is created post the CI Build 
Automation Task, the CI can trigger the pDiff server to start 
crawling through the new release and storing the screenshots 
along with the difference screenshots. 

7.3 Manual Approval 
 

The Manual Tester can now access the pDiff web 
application to check the status and manually approve or 
reject each difference marked by the tool. 

 

 

7.4 Marking the Release 
 

The tester can now mark the entire release as good or bad 
depending on the types of differences. Once the release is 
marked as good the release can be automatically deployed as 
it has been approved and meets the standards of the 
application. 

The pDiff application maintains a central server that uses 
MySQL for database storage but can alternatively also use 
SQLite. pDiff organizes the releases based on the build ID that 
is released by the CI Server. A new build can also be created 
using the API server’s UI. A build refers to a binary that is 
ready to be deployed on a production server. As each release 
can be repeated multiple times, a history of each released is 
also maintained by the server and changes can be rolled back 
if not required. 

The visual difference of multiple page is termed as a test 
run and there can be different test runs depending on the 
nature of the application. The life-cycle of the release is – 

• Create – A new release is created 

• Receive – The release is waiting for tests to run 

• Process – Tests have been run but some other tasks 
are yet to finish. 

• Review – The Manual Tester is currently reviewing 
the changes and differences. 

7. CONCLUSIONS 
 

In conclusion it is safe to say that the pDiff tool can be a 
valuable addition to the CD pipeline as it adds increased 
reliability to manual testing. Perceptual Difference 
applications can also be readily integrated with current CI 
tools like Jenkins. pDiff server and API can be triggered 
directly with Jenkins plugins.  

As companies increase in size and in terms of the number 
of developers assigned to the project it becomes easier to let 
small errors slide that are not reported even by the 
automated error reporting mechanisms. These errors reduce 
reliability and trust of the product. This in turn increases the 
lead time associated with a project. Overhead time associated 
with testing can be significantly reduced by completely 
automating even the smallest of details that can be done with 
the help of a program. As lead time reduces, programmer 
efficiency and productivity also increases as a result of 
increased happiness on having code going live in relatively 
frequent intervals. At the end of the day, a happy 
programmer is a productive programmer. 

  

ACKNOWLEDGEMENT 

The Authors thank the open source community for 
supporting and helping developers in all fields of the 
industry. We would also like to thank Bret Slatkin for his talk 
at the Velocity Software Development conference without 
whom this paper would not have been possible. 



          International Research Journal of Engineering and Technology (IRJET)      e-ISSN: 2395 -0056 

               Volume: 03 Issue: 11 | Nov -2016                      www.irjet.net                                                               p-ISSN: 2395-0072 

 

© 2016, IRJET       |       Impact Factor value: 4.45        |       ISO 9001:2008 Certified Journal       |        Page 798 
 

 

REFERENCES 
 
[1] S. Neely and S. Stolt, “Continuous delivery? easy! just 

change everything (well, maybe it is not that easy),” in 
Agile Conference (AGILE), Aug 2013, pp. 121–128 

[2] Humble and D. Farley, Continuous delivery: reliable 
software releases through build, test, and deployment 
automation. Pearson Education, 2010. 

[3] Timo Lehtonen, Sampo Suonsyrjä, Terhi Kilamo, and 
Tommi Mikkonen in Defining Metrics for Continuous 
Delivery and Deployment Pipeline SPLST 2015 

[4] A. Maruf Aytekin, Release Management with Continuous 
Delivery:A Case Study in International Journal of Social, 
Behavioral, Educational, Economic, Business and 
Industrial Engineering Vol:8, No:9, 2014 

[5] Leigh Garrett  Amy Robinson. Spot the Difference! 
Plagiarism identification in the visual arts, unpublished. 

[6] Amruta Kumbhar, Madhavi Shailaja & Ravi Shankar 
Anupindi, Getting Started with CI in software 
development, White Paper, InfoSys 2015 

[7] J. Humble, C. Read, and D. North, “The deployment 
production line,” in Agile Conference. IEEE, 2006, pp. 6–
pp 

[8] P. Debois, “Devops: A software revolution in the 
making,” Cutter IT Journal, vol. 24, no. 8, 2011. 

 

 


