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Abstract - State space control has a wide application for 
multiple inputs and multiple outputs systems. In several 
researches, it is used to control Inverted Rotary Pendulum 
(IRP) whose reference inputs are zero. In this paper, this 
control algorithm is deployed to regulate an IRP working 
when the arm is at non-zero position. The controlling 
challenge is the IRP state vector has to be extended to deal 
with the arising error. As consequently, the IPR’s parameter 
matrices are also expanded to handle with the new vector. 
Base on that, a state space control law is built to implement 
the regulation by LQR method. The calculated control law is 
tested by simulation and experiments. The results present the 
availability of the LQR approach in controlling the IRP with 
nonzero input. 
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1.INTRODUCTION 
 
Inverted Rotary Pendulum (IRP) is a nonlinear under-
actuated mechanical system which is well-suited to verify 
and practice the ideas of control theory [1][2].  There were 
several control methods applied on IRP models and their 
responses to hold the pendulum at upright position were 
good. [1]-[5]. 

In some researches, real IRP models were built and 
controlled by some control methods such as State Space 
Control, PID, Fuzzy Control [3]-[5]. Those control algorithms 
regulated the IRP and stabilized it when the pendulum is at 
the upright position. However, all the researches have only 
focused on controlling the IRP as its arm stays at the zero 
position. It means the arm can work only in one position in 
the whole operating range (0o ÷ 360o). 

This paper is to find a way to regulate the IRP to work with 
non-zero input for the arm position. In order to do that, State 
Space Control method is used to determine a control law. To 
handle with the error causing by the nonzero position of the 
arm, one more state is added to the IRP state vector, 
increasing the considered states into five. This will make the 
controller more complicated.  

In the following sections, we will set up the dynamic 
equation systems of the IRP, establish an appropriate control 

law, build a model and simulate it, and finally make 
experiments by applied the control law in a real IRP. 

 

2. IRP’s DYNAMIC EQUATION SYSTEM 
 
IRP consists of two rotary axes whose positions are the two 

system’s outputs. Its structure is shown in the Fig - 1 with an 

arm with length ρ and a pendulum bar l rotating around the 

Z-axis and Y-axis. The rotation of the arm and bar are called 

angles α and , respectively. In steady state, the mass m stays 

at the upright position ( = 0) and the arm’s position α 

stands at a desired position.  

 

Fig - 1: An IRP structure 

The pendulum is driven by a DC motor via a gearbox and a 
belt transmission. As angles α and φ change, the differences 
between the values and the desired inputs are used as the 
input for the controller. With the parameters above, the IRP 
dynamic equations have built by author’s master thesis [6], 
and the results are presented here: 
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Min is the torque driven from DC motor. 

The IRP only works around the upright position with small 
deviation  and α varies slowly around desired position. 
Therefore an approximated model is built by linearization 
around the working point. Before doing that, a state vector is 
established by introducing some new variables (α1, 1, α2, 
2): 

   2211
;;;   

    222121 ;;;  

Introduce state vector x: 
Tx ][ 2211

       (2) 

Linearizing the equation system (1) around the working 
point ( 0; α 0), sin  0; sinα  0, cos 1; cosα  1, results 
in: 
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Combination with DC motor and gearbox: The IRP is driven 
by a DC motor with gearbox and belt transmission which are 
shown in Fig - 2: 

 
Fig - 2: DC motor circuit with gearbox - belt transmission 

From the DC motor electrical circuit and the transmission via 
gear box and the belt, the relationship between the input 
voltage, arm angle α1 and Min is: 
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where  = gmb, K1 = KgKbKt; 
tbg KKKK 22

2  . 

(Rm: resistance of the motor, Vm,: supplied voltage, Min,: output 
torque of the belt transmission, m, b, g: efficiencies of DC 
motor, belt transmission, gearbox,  Km, Kt: motor & torque 
constant, Kb, Kg transmission ratios of the belt and gearbox)  

Substitute Equation (4) into Equation (3): 
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As the dynamic equations get done, the features of the IRP 
can be verified. 

 
3. CONTROL LAW 

Before finding out an appropriate control law, the IRP is 
inspected for controllability and observability. 

Introducing matrices A , B , and C : 
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3.1 Controllability 

It is a property, which enables one to steer the dynamic 
system to a desired trajectory [8] 

The IRP system is controllable if and only if the matrix  

 BABABABQ
c

32  

is non-singular [8]. 

The controllability of IRP is checked at section 4 when all 
parameters are substituted in the formula. 

3.2 Observability 

It is a property, with which the system state trajectory can be 
deduced from the input and output trajectories [8]. 

The IRP is observable if and only if the matrix  

Where   T
o

ACACACCQ 32  

is non-singular [8]. 

Multiplying two matrices C  and A  with the form above, 

lead to: 
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Rank(
o

Q ) = 4, so 
o

Q  is non-singular and the IRP  system is 

observable. 
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3.3 Establishing an appropriate control law 

The control parameters K is calculated by LQR approach 
with Matlab function lqr(). The function’s inputs are four 

matrices: A , B , Q  and R , the last two matrices are used to 

balance the effort and responses of the system.  

To control the IRP at a non-zero position of the arm, there is 
a new state added to the State Vector (2).  

Introduce a new variable e: 

e = α1 – r   (6) 

where r is a non-zero desired position of the arm. 

Differentiating Equation (6): 

21   e    (7) 

Introduce another new variable xI with: 

ex I      (8) 

A new state vector xN is created by combining the State 
Vector (2) and the new one xI: 

 TIN xx 2211   

Because of changing the state vector, the IRP model can now 
be expressed as  

rNNNN uBxAx   

And their new parameters: 
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with five states and one input, the matrices Q  and R  have 

dimension 5x5 and 1x1. The control law is adjusted by the 
educated trail-and-error-repetition technique until the 
performance of the controlled system is stable within 3 
seconds. The adjustment gets done by changing the matrices 

Q  and R . After check and error, the most appropriate 

values of two matrices Q  and R are: 

])1,5.0,2.0,2,5.0([diagQ  ;     R = 0.5; 

Applying lqr() function with the parameters above to find 
the control law. 

K = lqr(AN, BN, Q, R) 

 

4. MODELING AND SIMULATION 

Based on the dynamic equation and control law, the model is 
built on MatLab-Simulink. 

 

4.1 Modeling 

To ease the understanding, components of the IRP equations 
are grouped into a subsystem called PLANT. The others two 
parts are the integral one and feedback one. The structure is 
shown in the Fig - 3. 

The states are multiplied with their own control parameters 
K1, K3, K2, K4 and K5.  The first four ones belong to Feedback 
part whose inputs are four states (positions and angular 
velocity of pendulum and arm) and its output is a part of 
feedback signal. 

 

Fig – 3: Closed Loop Model 

4.2 Simulation 

Based on a real IRP, the parameters for the Simulink - model 

are: 

Kt = 0.02 Nm/A, l = 0.3m, m = 0.03Kg, ηb = 0.98, J = 0.002 

Kgm2, g = 0.98, ηm = 0.51, g = 9.8 m/s2, Rm = 

3Ohm, Kg = 18, Km = 0.02 Vs/rad, Kb = 4. 

Substituting the system parameters to calculate the 

coefficients of the matrices A and B : 
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The next step is to check the IRP’s controllability. Using the 

det() function from MatLab: 

  0836.2det  eQ
c

; 

Hence, rank(
c

Q ) = 4 and the IRP is controllable. 

The IRP is controllable and observable; therefore it fulfills 

the necessary conditions to design a control law.  
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Using lqr() function to get the control law: 

K = lqr(AN, BN, Q, R) 

K = [-2.92     50.5    -4,1   10,1    -1,41]T 

With these parameters, the  IRP’s stability needs to be 

verified. The system is stable if and only if all the poles and 

zeros are negative [8]. The poles and zeros are determined 

by function eig(): 

 KBAeigZP
NN
  

ZP=[-182.7 -0.7+0.6i  -0.7-0.6i  -4.9+0.6i  -4.9-0.6i]T 

The found result meet the mentioned condition, therefore 

the controlled IRP is stable. 

To simulate the model, there are several prerequisites. 

Firstly, the controlled IRP only works in a small range (-0.16 

÷ 0.16) rad around the upright position and the mass M’s 

velocity is small (≤ 0.4m/s). The initial conditions for the 

model are: The desired inputs: α = 0.4 rad;  = 0 rad, the 

initial positions of angles α0= 0.15 rad; 0 = 0.1 rad and two 

initial angular velocities ,/00 sm  sm /1.00  . 

The IRP model’s responses are shown in Fig-4 and 5. The 

horizontal and vertical axes represent the simulation time 

(second) and the angle values (rad), respectively. Fig - 4 

presents the behavior of the arm. From initial position α0= 

0.15 rad, it moves rapidly to the negative position to hold the 

mass M at the upright position. When the mass M is stable, 

the pendulum’s arm reaches its desired position α0= 0.4 rad 

after 2.8 seconds. 

 

Fig – 4: Angle α response 

Fig-5 shows the behaviors of the mass M. From initial 
position 0 = 0.1 rad, it moved to the upright position and 
stayed there after 0.8 seconds.  

 

Fig – 5: Angle  response 

 

5. EXPERIMENT AND RESULTS 

After the simulation, the control law is applied to a real IRP 
(Fig. 7) whose parameters are mentioned on previous 
section. The machine is controlled by four microcontrollers 
(uC) AT90CAN128. The arm and pendulum angles are 
measured by two optical encoders which have 2000 
values/revolution.  The communication among these 
microcontrollers is done by TTCAN protocol. 

The positions of the two angles during the IRP operation are 
transmitted to a computer via uC’s USART port and a Hterm 
device. These data are plotted graphically by software 
Gnuplot. 

  

   Fig – 6: A real model of IRP 

At non-operation state, the pendulum is at right-down 
position and its angle is set to “0”. At stable working 
condition, the pendulum should stay at upright range (171o ÷ 
189o) or (-189o ÷ 171o) and the values of the pendulum’s 
encoder should be in (910÷1090) or (-1090÷ -910). To move 
the pendulum into the upright range, the DC motor supplies 
kinetic energy to the pendulum and make it oscillating with 
increasing magnitude. Since the pendulum reaches the 
Upright range, the IRP controller switches to the Upright 
phase, and use the State Space control law (which is 
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established in the previous section) to regulate the 
pendulum stay in that range.  

The Fig-7 and 8 present graphically positions of the 
pendulum and the arm from the experiment. The data were 
collected from the encoders and processed by a computer. 
The time is counted by uC’s counters and presented by the 
horizontal axes. Each counter value is equal to 2 msec. 

 

Fig – 7: The Pendulum is in Upright range after oscillating 
with increasing amplitude 

The Fig - 7 shows the pendulum position from oscillating 
with increasing amplitude to reach the Upright range then 
stays in that range. The vertical axis presents the position of 
the pendulum (from the pendulum’s encoder with the value 
range from -1999 to +1999). The time to get the data starts 
at the value 6000. Starting from the zero position, the DC 
motor had driven the pendulum to swing up. After several 
oscillations, the pendulum had enough energy to go to the 
Upright range. In that range, the IRP switches to Upright 
phase and uCs use the calculated control law to regulate the 
pendulum stays at that range steady. The pendulum position 
still stays stable in this range even though the arm position 
varies. 

The Fig - 8 presents the arm position with nonzero reference 
input. When the pendulum was at the upright position, the 
new position of the arm was set to -210, which was equal the 
encoder’s value -117. As the new reference input was 
applied, the arm moved slowly to the new position. The 
movement was not smooth but oscillating then reached the 
desired position at the counter value 5000. After that, the 
arm still oscillated but around the new position steady with 
decreasing amplitude. From the time of 25000, the 
amplitude of arm oscillation is stable about 2.7o (the encoder 
values are from 111 to 126). 

 

Fig - 8: The Arm position in Upright phase with nonzero 
reference input 

There are two reasons for that phenomenon. The first one is 
the gearbox’s backlash (around 0.50), which makes the arm 
loss amount of motion as the DC motor reverse the 
movement’s direction. That caused the arm slipped out the 
predefined amplitude and oscillated longer to reach the 
upright point. The second reason is the parallel 
misalignment between the shaft of the gearbox and the arm 
rotation axis, which makes the inconstant transmitted 
torque between the gearbox and arm rotated axis. It also 
creates the vibration of the arm axis. 

The Fig - 9 showed the IRP in the Upright State when the 
arm position was set to -210 

 

Fig – 9: The IRP at upright position 

 
6. CONCLUSIONS 

In this paper, State Space Control method is deployed to 
control the IRP work when the arm can stay at non-zero 
position. By adding one more state to the system state 
vector, the state space controller can handle with the error 
causing by non-zero position of the IRP arm. Despite of 
several mechanical problems such as the backlash of the 
gearbox, the parallel misalignment between the arm rotated 
axis and the gearbox’s output shaft, the controlled algorithm 
still can regulate the pendulum’s operation to meet the 
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requirements. The result proves the robustness of the 
control method in the SIMO system. 
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