
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 10 | Oct -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 470

Unrestricted Natural Language Implementation in Programming

Deepanjali Satu1, A.Avinash2

1Student, B.Tech, Dept. of Computer Science and Engineering
Centurion University of Technology and Management, Gajapati, Odisha, INDIA

2Assistant Professor, B.Tech, Dept. of Computer Science and Engineering
Centurion University of Technology and Management, Gajapati, Odisha, INDIA

---***---

Abstract - We argue it is better to program in a natural
language such as English, instead of a programming
language like Java. A natural language interface for
programming should result in greater readability, as well
as making possible a more intuitive way of writing code.
In contrast to previous controlled language systems, we
allow unrestricted syntax, using wide-coverage syntactic
and semantic methods to extract information from the
user’s instructions. We also look at how people actually
give programming instructions in English, collecting and
annotating a corpus of such statements. We identify
differences between sentences in this corpus and in
typical newspaper text, and the effect they have on how
we process the natural language input. Finally, we
demonstrate a prototype system, that is capable of
translating some English instructions into executable
code. This paper describes about the implementation of
the unrestricted natural language in programing . This
paper contain a collection of basic description of NLP, its
interconnectivity with database code, dealing with
simplicity of the code and parser etc,.

Key Words: Pseudo code, English code, technical code,
parse phase, NLID, Semantic, etc

1.INTRODUCTION
Any language that human beings learn from their
surroundings and apply to communicate with one another is
called natural language. Natural languages are employed to
articulate the knowledge, acquaintance and sensations and
to communicate our responses to others. In essence the
natural languages are the most powerful, proper and logical
way of communication. A language is not simply a system of
communication, but also a form of power.
Artificial languages are created by humans to communicate
with their technologies. The term artificial language implies
a language specially crafted by humans. Most of the artificial
languages are developed to communicate with technologies
like computers. All programming languages are artificial
languages. Programming languages are developed by
humans for expressing algorithms in computational way and

instructing the machines. Scientific study of languages is
called linguistics. The detailed studies of languages from
linguistics point of view signify that among all the
communicational systems, natural languages are the most
powerful, effective and precise way of communication,
consequently it is viable and attainable to use natural
languages in other computational areas.Programming is
hard. It requires a number of specialised skills and
knowledge of the syntax of the particular programming
language being used. Programmers need to know a number
of different languages, that can vary in control structures,
syntax, and standard libraries. In order to reduce these
difficulties, we would like to express the steps of the
algorithm we are writing in a more natural manner, without
being forced into a particular syntax. Ideally, we want a plain
English description. We have built an initial prototype of
such a system, taking unrestricted English as input, and
outputting code in the Python programming language. Also,
it is often easier to write an English sentence describing
what is to be done, than to figure out the equivalent code.
Many programmers write in a pseudocode style that is
almost English before elaborating on the details of an
algorithm. There are also many tasks that can easily be
described using English sentences, but are much harder to
express as code, such as negation and quantification.
Another advantage is that code written in English will be
much easier to read and understand than in a traditional
programming language. These complications are a result of
the computer’s implementation, rather than the algorithm
we are trying to describe. We would like to abstract away
these issues, using information present in the English
sentences to figure out the correct action to take.

2. Descriptive Natural Language Programming
When story tellers speak fairy tales, they first describe the
fantasy world–its characters, places, and situations – and
then relate how events unfold in this world. Programming,
resembling storytelling, can likewise be distinguished into
the complementary tasks of description and
proceduralization. While the basics of NLP (Natural
Language Processing) for NLP (Natural Language
Programming) 321 Building procedures out of steps and
loops, it would be fruitful to also contextualize procedural
rendition by discussing the architecture of the descriptive

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 10 | Oct -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 471

world that procedures animate. Among the various
paradigms for computer programming– such as logical,
declarative, procedural, functional, object-oriented, and
agent-oriented – the object-oriented and agent-oriented
formats most closely embody human story telling intuition.
Consider the task of programming a MUD2 world by natural
language description, and the sentence. A theory of
programmatic semantics for descriptive natural language
programming is presented in here, we overview its major
features, and highlight some of the differences between
descriptive and procedural rendition. These features are at
the core of the Meta for natural language programming
system that can render code following the descriptive
paradigm, starting with a natural language text.

2.1 Syntactic Correspondences
There are numerous syntactic correspondences between
natural language and descriptive structures. Most of today’s
natural languages distinguish between various parts of
speech that taggers such as Brill’s can parse – noun chunks
are things, verbs are actions, adjectives are properties of
things, adverbs are parameters of actions. Almost all natural
languages are built a top the basic construction called
independent clause, which at its heart has a who-does-what
structure, or subject-verb-direct Object-indirect Object
(SVO) construction. Although the ordering of subject, verb,
and objects differ across verb-initial (VSO and VOS, e.g.
Tagalog), verb-medial (SVO, e.g. Thai and English), and verb-
final languages (SOV, e.g., Japanese), these basic three
ingredients are rather invariant across languages,
corresponding to an encoding of agent-method and method
argument relationships. This kind of syntactic relationships
can be easily recovered from the output of a syntactic parser,
either supervised, if a Treebank is available, or unsupervised
for those languages for which manually parsed data does not
exist. Moreover, other ambiguity phenomena that are
typically encountered in language, e.g. pronoun resolution,
noun-modifier relationships, named entities, can be also
tackled using current state-of-the-art natural language
processing techniques, such as coreference tools, named
entity annotators, and others. Starting with an SVO structure,
we can derive agent-method and method-argument
constructions that form the basis of descriptive
programming. Particular attention needs to be paid to the
ISA type of constructions that indicate inheritance. For
instance, the statement Pacman is a character who ...
indicates a super-class character for the more specific class
Pacman. 2 A MUD (multi-user dungeon, dimension, or
dialogue) is a multi-player computer game that combines
elements of role-playing games, hack and slash style
computer games, and social instant messaging chat rooms
(definition from wikipedia.org). 322 R. Mihalcea, H. Liu, and
H. Lieberman.

 2.2 Scoping Descriptions
Scoping descriptions allow conditional if/then rules to be
inferred from natural language. Conditional sentences are

explicit declarations of if/then rules, e.g. When the customer
orders a drink, make it, or Pacman runs away if ghosts
approach. Conditionals are also implied when uncertain
voice is used, achieved through modals as in e.g. Pacman may
eat ghosts, or adverbials like sometimes–although in the
latter case the antecedent to theif/then is under specified or
omitted, as in Some times Pacman runs away.

Fig -1: The descriptive and procedural representations for
the conditional statement When customer orders a drink, the
bartender makes it.

An interesting interpretative choice must be made in the
case of conditionals, as they can be rendered either
descriptively as functional specifications, or procedurally as
if/then constructions. For example, consider the utterance
When customer orders a drink, the bartender makes it. It
could be rendered descriptively as shown on the left of
Figure , or it could be proceduralized as shown on the right
of the same figure. Depending upon the surrounding
discourse context of the utterance, or the desired
representational orientation, one mode of rendering might
be preferred over the other. For example, if the story teller is
in a descriptive mood and the preceding utterance was there
is a customer who orders drinks, then most likely the
descriptive rendition is more appropriate.

2.3 Set-Based Dynamic Reference
Set-based dynamic reference suggests that one way to
interpret the rich descriptive semantics of compound noun
phrases is to map them into mathematical sets and set-based
operations. For example, consider the compound noun
phrase a random sweet drink from the menu. Here, the head
noun drink is being successively modified by from the menu,
sweet, and random. One strategy in unraveling the
utterance’s programmatic implications is to view each
modifier as a constraint filter over these to fall drink
instances. Thus the object a Random Sweet Drink From The
Menu implies a procedure that creates a set of all drink
instances, filters for just those listed in the Menu, filters for
those having the property sweet, and then applies a random
choice to the remaining drinks to select a single one. Set-
based dynamic reference lends great conciseness and power
to NLP (Natural Language Processing) for NLP (Natural

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 10 | Oct -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 472

Language Programming) 323 natural language descriptions,
but a caveat is that world semantic knowledge is often
needed to fully exploit their semantic potential. Still, without
such additional knowledge, several descriptive facts can be
inferred from just the surface semantics of a random sweet
drink from the menu – there are things called drinks, there
are things called menus, drinks can be contained by menus,
drinks can have the property sweet, drinks can have the
property random or be selected randomly. Later in this
paper, we harness the power of set-based dynamic reference
to discover implied repetition and loops.

Occam’s Razor would urge that code representation should
be as simple as possible, and only complexified when
necessary. In this spirit, we suggest that automatic
programming systems should adopt the simplest code
interpretation of a natural language description, and then
complexify, or dynamically refactor, the code as necessary to
accommodate further descriptions. For example, consider
the following progression of descriptions and the simplest
common denominator representation implied by all
utterances up to that step.

a) There is a bar. (atom)
b) The bar contains two customers. (unimorphic list of

type Customer)
c) It also has a waiter. (unimorphic list of type Person)
d) It has some tools. (polymorphic list)
e) The bar opens and closes. (class/agent)
f) The bar is a kind of store. (agent with inheritance)
g) Some bars close at 6pm, others at 7pm. (forks into

two subclasses)
Applying the semantic patterns of syntactic correspondence,
representational equivalence, set-based dynamic reference,
and scoping description to the interpretation of natural
language description, object-oriented code skeletons can be
produced. These description skeletons then serve as a code
model which procedures can be built out of. Mixed-initiative
dialog interaction between computer and storyteller can
disambiguate difficult utterances, and the machine can also
use dialog to help a storyteller describe particular objects or
actions more thoroughly. The Metafor natural language
programming system implementing the features highlighted
in this section was evaluated in a user study, where 13non-
programmersand intermediate programmers estimated the
usefulness of the system as a brainstorming tool. The non-
programmers found that Metafor reduced their
programming task time by 22%, while for intermediate
programmers the figure was 11%. This result supports the
initial intuition from and that natural language programming
can be a useful tool, in particular for non-expert
programmers.

3. Example
We can see in Table 1. two example programs that could be
entered by a user. The code for the first program matches
what is outputted by the current system, but the second is
more complicated and does yet work correctly. Looking at

the these examples, we can see a number of difficulties that
make the problem hard, as well as form some intuitions that
can help to solve the task. For example, the first line of both
programs involves three function calls because of variable
typing.
ENGLISH PYTHON
read in a number number=

add 2 to the number
print out the number

int(sys.stdin.readline()
.strip())
number += 2
print number

read in 2 numbers
number1 =

 number2 =

add them together
print out the result

int(sys.stdin.readline()
.strip())
int(sys.stdin.readline()
.strip())
result = number1 + number2
print result

Table 1: Some example English sentences and their Python
translations.

In Python, we must first read in a string, then strip away the
newline character, and finally convert it to an integer. We
can tell that integer conversion is required, firstly because of
the name of the variable itself, and secondly, because a
mathematical operation is applied to it later on. Of course, it
is still ambiguous. The user may have expected the number
to be a string, and to have the string 2 concatenated to what
was read in. However, the code in Figure 1 is more likely to
be correct, and if the user wants to use a string
representation, then they could specify as much by saying:
read in a number as a string.Another problem to deal with is
the referencing of variables. In the first program, it is fairly
easy to know that number is the same variable in all three
sentences, but this is not as easy in the second. For the first
sentence of the second program, the system needs to
interpret 2 numbers correctly, and map it to multiple lines of
code. Another complication is them, which references the
previously mentioned variables. Finally, result, which does
not appear in the second line, must still be part of the
equivalent code, so that it can be used later. However, we do
not want to restrict the vocabulary available to a user, or
force them to construct sentences in a specific way, as is the
case for existing restricted natural languages (Fuchs and
Schwitter, 1996). Of course, this means that we must then
deal with the inherent ambiguity and the great breadth of
unrestricted natural English. For this reason, we employ
wide-coverage syntactic and semantic processing, that is
able to process this extensive range of inputs. In order to
resolve ambiguities, we can apply the intuitions we have
described above. We may not be sure that the number
should be treated as an integer, but this is more likely than
treating it as a string. This is the conclusion that our system
should come to as well.

4. Background
Clearly, the task we are undertaking is not trivial. Though
there are a number of related systems to the one we

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 10 | Oct -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 473

propose, which have had success implementing a natural
language interface for some task.

4.1. Natural Language Interfaces to Databases
The most popular task is a Natural Language Interface for a
Database (NLIDB) (Androutsopoulos et al., 1995). This is
because databases present a large amount of information,
which both novice and expert users need to query. A specific
query language such as SQL must be used, which requires
one to understand the syntax for entering a query, and also
the way to join the underlying tables to extract data that is
needed. A NLIDB simplifies the task, by not requiring any
knowledge of a specific query language, or of the underlying
table structure of the database. We can see how this is
similar to the English programming system that we are
constructing. Both take a natural language as input, and map
to some output that a computer can process. There are a
number of problems that exist with NLIDBs. Firstly, it is not
easy to understand all the ambiguity of natural language, and
as such, a NLIDB can simply respond with the wrong
answers. As a result of this, many NLIDBs only accept a
restricted subset of natural language. For example, in the
NLIDB PRE (Epstein, 1985), relative clauses must come
directly after the noun phrases they are attached to.One
feature of many NLIDBs, is the ability to engage the user in a
dialogue, so that past events and previously mentioned
objects can be referenced more easily. Two examples of this,
anaphora and elliptical sentences, are shown in Figure 2.
Understanding that it refers to the ship, and that the female
manager’s degrees are again the subject of the question,
reduces the amount of effort required by the user, and
makes the discourse more natural. We also intend to
maintain a discourse between the user and the computer for
our own system.

Fig 2: An example of anaphora and an elliptical sentence
This would also allow us to resolve much of the ambiguity
involved in natural language by asking the user which
possibility they actually meant.

4.2.Early Systems
One of the first natural language interfaces is SHRDLU
(Winograd, 1972), which allows users to interact with a
number of objects in what was called Blocksworld. This
system is capable of discriminating between objects,
fulfilling goals, and answering questions entered by the user.

It also uses discourse in order to better interpret sentences
from the user. There were also a handful of systems that
attempted to build a system similar to what we describe in
this paper (Heidorn, 1976; Biermann et al., 1983). Most of
these used a restricted syntax, or defined a specific domain
over which they could be used. Our system should have
much greater coverage, and be able to interpret most
instructions from the user in some way. More generally, we
can look at a system that interprets natural language
utterances about planetary bodies (Frost and Launchbury,
1989). This system processes queries about its knowledge
base, but is restricted to sentences that are covered by its
vocabulary and grammar. It deals with ambiguous questions
by providing answers to each possible reading, even when
those readings would be easily dismissed by humans. With
our system, we will determine the most likely reading, and
process the sentence accordingly.

4.3. Understanding Natural Language
One thing that we have not yet considered is how people
would describe a task to be carried out, if they could use
English to do so. The constructs and formalisms required by
traditional programming languages do not apply when using
a natural language. In fact, there are many differences
between the way non-programmers describe a task, to the
method that would be employed if one were using a typical
programming language (Pane et al., 2001). Firstly, loops are
hardly ever used explicitly, and instead, aggregate
operations are applied to an entire list. These two methods
for describing the same action are shown in Fig 4.

Fig 3: Finding the sum of the values in a list
Another point of difference comes in the way people use
logical connectives such as AND and OR, which are not
neccesarily meant in the strictly logical way that is the case
when using a programming language. There are also
differences in the way that people describe conditions,
remember the state of objects, and the way they reference
those objects.There are actually many ways in which natural
language constructions map onto programming concepts.
These programmatic semantics (Liu and Lieberman, 2004)
can be seen in syntactic types, where nouns map to objects
or classes, verbs map to methods, and adjectives to
attributes of the classes. Using these concepts could allow us
to more easily understand an English sentence, and map it to
a corresponding code output. Metafor (Liu and Lieberman,
2005) is a system that uses these ideas, taking a natural
language description as input. As output, the system
provides scaffolding code, that is, the outline for classes and
methods, and only a small amount of actual content. The
code is not immediately executable, but can help the
programmer in getting started.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 10 | Oct -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 474

Natural Java (Price et al., 2000) is another natural language
programming system that allows users to create and edit
Java programs using English commands. Each sentence in
the natural language input given to the system is mapped to
one of 400 manually created case frames, which then
extracts the triggering word and the arguments required for
that frame. The frame can generate a change in the Abstract
Syntax Tree (AST), an intermediate representation of the
code, which is turned in Java code later. This system has a
number of problems that we intend to improve on. Firstly, it
can only handle one action per sentence. Our prototype can
detect multiple verbs in a sentence, and generate code for
each of them. Also, the AST representation Natural Java uses
makes it hard to navigate around a large amount of code,
since only simple movement operations are available.
Another problem with Natural Java is that it maps to specific
operations that are included in Java, rather than more
general programming language concepts. This means that it
is not adaptable to different programming languages. We
intend to be more language-neutral. A user of our system
should not need to look at the underlying code at all, just as a
programmer writing in C does not need to look at the
machine code.

5. English Code Corpus
In order to investigate the way that people would use
English to describe a programming task, we licited responses
from programmers, asking them to describe how they would
solve sample tasks. These tasks included finding the smallest
number in a list, splitting a string on a character and finding
all primes less than 100. The respondents were all
experienced programmers, since computer science staff
were all that were easily available. As a result of this, they
tended to impose typical programming constructs on what
they wanted to do, rather than using a simpler English
sentence. For example, one respondent wrote For each
number in the list compare to min., when Compare each
number in the list to the min. is more straightforward. This
demonstrates quite well the way that programming
languages force us to use a specific unnatural syntax, rather
than the freer style that a natural language allows. The
corpus is comprised of 370 sentences, from 12 different
respondents. They range in style quite significantly, with
some using typically procedural constructs such as loops and
ifs (complete with the non-sensical English statement: end
loop in some cases), while others used a more declarative
style. We have semi-automatically tagged the entire corpus
with CCG categories (called supertags). This process
consisted of running the parser on the corpus, and then
manually correcting each parse. Corrections were required
in most sentences, as the way people express programming
statements varies significantly from sentences found in
newspaper text.
An example of this is in Fig5. This sentence uses an
imperative construction, beginning with a verb, which is
quite different from declarative sentences found in
newspaper text, and the earlier example in Figure 4. We can

also notice that the final category for the sentence is S[b]\NP
, rather than simply S. Another difference is in the
vocabulary used for programming tasks, compared to Wall
Street Journal (WSJ) text. We find if, loop, and variables in
the former, and million, dollars, and executives in the latter.

Fig 4: A CCG derivation for an English programming
instruction.
Particular words can also have different grammatical
functions. For example: print is usually a noun in the WSJ,
but mostly a verb while programming.

6. Combinatory Categorial Grammar
Combinatory Categorial Grammar (CCG) is a typedriven,
lexicalised theory of grammar (Steedman, 2000). Each word
receives a syntactic category that defines its predicate-
argument relationship with surrounding words. We can see
a simple example of this in Fig 4. Each word is assigned a
category that defines how it is involved with other words in
the sentence. These relationships are carried out through a
number of rules, such as forward and backward application,
which can be seen in the example. Additional rules such as
composition and conjuction also allow the formalism to
easily capture long-range dependencies. This is particularly
important for our system, as the constructions used to
describe programming instructions often contain non-
standard constituents such as extraction, relativization, and
coordination. These possiblities result in a large number of
interpretations, as a single word can be assigned a different
category depending on how it is used, and the words that
surround it. However, the application of statistical parsing
techniques for CCG have shown that it is capable of
performing wide coverage parsing at state-of-the-art levels
(Clark and Curran, 2004).

7. System Architecture
The system architecture and its components are shown in
Fig 5.

Fig 5: The system architechture
Firstly, the user will enter text that will be parsed by the CCG
parser. We then translate the predicateargument structure

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 10 | Oct -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 475

generated by the parser into a first-order logic
representation of DRS predicates.This gives us a more
generic representation of the sentence, rather than the
specific wording chosen by the user. The final step is to
generate the code itself. Throughout these three phases, we
also intend to use a dialogue system that will interact with
the user in order to resolve ambiguity in their input. For
example, if the probability with which the parser gives its
output is too low, we may ask the user to confirm the main
verb or noun. This is especially important, as we do not
intend for the system to be foolproof, but we do intend that
the user should be able to solve the problems that they
encounter, either through greater specification or
rephrasing. At this current stage though, we have only dealt
with basic functionality. Also, as we progress through each
stage, we will follow the example previously shown in Fig 5.
We will see how the processing we do manages to begin with
this English input, and eventually output working Python
code.

8. Parse Phase
In The Complete Lojban Language, Cowan provides both
YACC and EBNF grammars for defining legal Lojban
utterances, however additional post-processing is required
for properly handling many constructs, particularly optional
terminators. Robin Lee Powell has done additional work to
produce a more powerful Parsing Expression Grammar to
represent Lojban. Because PEG allows for ordered choices,
rather than the unordered choices of YACC and EBNF,
Powell’s grammar can handle directly those cases which
required post-processing in Cowan’s solutions. For the first
analysis pass, the system utilizes a parser produced by
Robert Grimm’s Rats! parser generator using Powell’s PEG
grammar. Using the grammar, the parser verifies the
statement is legal Lojban and annotates its syntactic
structure. For example, the phrase “lo cribe poixekri
cuklama” would be annotated as:
“The output of the parser is then used to build an in-
memory n-tree of tokens for the next analysis phase.”

9. Semantics
From the syntactic representation of the sentence, we wish
to build a more semantically abstracted version of what the
user wants to translate into code. The advantage of this is
that we can more readily extract the particular verbs and
nouns that will become functions and their arguments
respectively.

Fig 6: The original, incorrect CCG derivation.

Fig 7: Parse result

Fig 8: DRS for example sentence
Having a logical form also means we can apply inference
tools, and thereby detect anomolies in the user’s
descriptions, as well as including other sources of knowledge
into the system. The ccg2sem system (Bos et al., 2004;
Blackburn and Bos, 2005) performs this task, taking CCG
parse trees as input, and outputting DRS logical predicates. A
single unambiguous reading is always outputted for each
sentence. The DRS for our example sentence is shown in Fig
8. We can see that the verb (x1) is identified by an event
predicate, while the agent (x4) and patient (x3) are also
found. One particular discriminating feature of the
imperative sentences that we see, is that the agent has no
representation in the sentence. We can also find the
preposition (x2) attached to the verb, and this becomes an
additional argument for the function. This logical form also
extracts conditions that would be found in if statements and
loops very well. Fig 9 shows the DRSs for the sentence: If
num is -1, quit. We can see the proposition DRS (the middle
box) and the proposition itself (x2), which entails another
verb (x3) to be interpreted. That is, we should carry out the
verb quit (x1), if the proposition is true. Almost all if
statements in the corpus are identified in this way.

Fig 9: DRS for if statement

10. Generation
Having extracted the functional verb and its arguments, we
then need to find a mapping onto an equivalent line of code.
The simplest technique, which the current system uses,
consists of a list of primitives, each of which describes the
specific verb in question as well as a number of arguments. If
the semantic information matches perfectly with a primitive,
then the equivalent code is generated. At present, there exist

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 10 | Oct -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 476

only a few primitives, shown in Figure 11. This system
obviously has a number of weaknesses. Firstly, that if the
user chooses a verb that is not listed in a primitive, then no
code can be generated. Also, some primitives would be
described with the same verb and arguments, but require
different code, such as adding two numbers together,
compared to adding one number to a list. This is similar to
operator overloading, a feature present in a number of
programming languages such as C++. We can also constrain
the number of possibilities by using intuitive notions, such as
not being able to output a previously unseen variable. Also,
we can take advantage of the limited domain of
programming. Rather than trying to list every sense of every
verb in the English language together with its equivalent
programming concept, we could create a much smaller set of
programming primitives, and simply map everything onto
one of those. Considering the small number of choices and
the constraints mentioned above, this may be possible using
a machine learning approach. Of course, we must consider
what to do when a function that is not one of the primitives
is referred to. In such a case, and assuming it can be
detected, we believe the most sensible thing to do is to ask
the user to describe how to carry out such a function, using
the more basic primitive functions that already exist. Thus
we would allow the creation of user-defined functions, just
as a normal programming language would.

Fig 10: Primitives used for generation
Looking back to our example sentence once more, we
proceed to extract the predicate (initialise) and argument
information (min variable, 0) from the DRS. This maps to the
initialise primitive in Figure 11. The matching code, stored in

the primitive, then comes out as:
This is clearly a suitable outcome, and we can say that for
this case, the system has worked perfectly.

10. CONCLUSIONS
Programming is a very complicated task, and any way in
which it can be simplified will be of great benefit. For this, a
user may be asked to clarify or rephrase a number of points,
but will not have to correct syntax errors as when using a
normal programming language. Using modern parsing
techniques, and a better understanding of just how
programmers would write English code, we have built a
prototype that is capable of translating natural language
input to working code. More complicated sentences that
describe typical programming structures, such as if
statements and loops, are also understood. Here we have
mentioned about the NLP and unrestricted NLP. This paper
will help in programing all the things that are required in
there, i,e..dealing with the areas all data and information are
stored in the database. By using this the user can easily

access the program, they does not need to remember the
whole technical code or process to write the program like in
java. They just need to write the tags in English code to
execute the program and if error arises then autocompilled
and corrected.

REFERENCES
[1] Muhammad Shumail Naveed, Muhammad Sarim,

Kamran Ahsan Department of Computer Science,

Federal Urdu University of Arts, Science &

Technology, Karachi, Pakistan.

[2] J. Bos, S. Clark, M. Steedman, J.R. Curran, and J.

Hockenmaier. 2004. Wide-coverage semantic

representations from a CCG parser. In Proceedings

of the 20th International Conference on

Computational Linguistics (COLING ’04), Geneva,

Switzerland.

[3] S. Clark and J.R. Curran. 2004. Parsing the WSJ using
CCG and log-linear models. In Proceedings of the
42nd Meeting of the ACL, Barcelona, Spain.

[4] S.S. Epstein. 1985. Transportable natural language

processing through simplicity – the PRE system.

ACM Transactions on Office Information Systems,

3:107–120.

[5] R. Frost and J. Launchbury. 1989. Constructing

natural language interpreters in a lazy functional

language. The Computer Journal. Special issue on

lazy functional programming, 32(2):108–121, April.

[6] N. E. Fuchs and R. Schwitter. 1996. Attempto

controlled English (ACE). In Proceedings of the First

International Workshop on Controlled Language

Applications, pages 124–136. G. E. Heidorn. 1976.

Automatic programming though natural language

dialogue: A survey.IBM Journal of Research and
Development, 20(4):302–313, July.

BIOGRAPHIES

Student of Centurion University of
Technology and Management.
Studing B.tech 3rd year in Dept. of
Computer Science and Engineering
(CSE).
E-mail Id:
140101csr035@cutm.ac.in

Assistant Professor at Centurion
University of Technology and
Management. M.Tech from GITAM
UNIVERSITY. Research area in
Image Mining. B.TECH from
JNTUH.
E-mail Id: a.avinash@cutm.ac.in

mailto:140101csr035@cutm.ac.in
mailto:a.avinash@cutm.ac.in

