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Abstract - We argue it is better to program in a natural 
language such as English, instead of a programming 
language like Java. A natural language interface for 
programming should result in greater readability, as well 
as making possible a more intuitive way of writing code. 
In contrast to previous controlled language systems, we 
allow unrestricted syntax, using wide-coverage syntactic 
and semantic methods to extract information from the 
user’s instructions. We also look at how people actually 
give programming instructions in English, collecting and 
annotating a corpus of such statements. We identify 
differences between sentences in this corpus and in 
typical newspaper text, and the effect they have on how 
we process the natural language input. Finally, we 
demonstrate a prototype system, that is capable of 
translating some English instructions into executable 
code. This paper describes about the implementation of 
the unrestricted natural language in programing . This 
paper contain a collection of basic description of NLP, its 
interconnectivity with database code, dealing with 
simplicity of the code and parser etc,. 
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1.INTRODUCTION  
Any language that human beings learn from their 
surroundings and apply to communicate with one another is 
called natural language. Natural languages are employed to 
articulate the knowledge, acquaintance and sensations and 
to communicate our responses to others. In essence the 
natural languages are the most powerful, proper and logical 
way of communication. A language is not simply a system of 
communication, but also a form of power. 
Artificial languages are created by humans to communicate 
with their technologies. The term artificial language implies 
a language specially crafted by humans. Most of the artificial 
languages are developed to communicate with technologies 
like computers. All programming languages are artificial 
languages. Programming languages are developed by 
humans for expressing algorithms in computational way and 

instructing the machines.  Scientific study of languages is 
called linguistics. The detailed studies of languages from 
linguistics point of view signify that among all the 
communicational systems, natural languages are the most 
powerful, effective and precise way of communication, 
consequently it is viable and attainable to use natural 
languages in other computational areas.Programming is 
hard. It requires a number of specialised skills and 
knowledge of the syntax of the particular programming 
language being used. Programmers need to know a number 
of different languages, that can vary in control structures, 
syntax, and standard libraries. In order to reduce these 
difficulties, we would like to express the steps of the 
algorithm we are writing in a more natural manner, without 
being forced into a particular syntax. Ideally, we want a plain 
English description. We have built an initial prototype of 
such a system, taking unrestricted English as input, and 
outputting code in the Python programming language. Also, 
it is often easier to write an English sentence describing 
what is to be done, than to figure out the equivalent code. 
Many programmers write in a pseudocode style that is 
almost English before elaborating on the details of an 
algorithm. There are also many tasks that can easily be 
described using English sentences, but are much harder to 
express as code, such as negation and quantification. 
Another advantage is that code written in English will be 
much easier to read and understand than in a traditional 
programming language. These complications are a result of 
the computer’s implementation, rather than the algorithm 
we are trying to describe. We would like to abstract away 
these issues, using information present in the English 
sentences to figure out the correct action to take. 

 
2. Descriptive Natural Language Programming 
When story tellers speak fairy tales, they first describe the 
fantasy world–its characters, places, and situations – and 
then relate how events unfold in this world. Programming, 
resembling storytelling, can likewise be distinguished into 
the complementary tasks of description and 
proceduralization. While the basics of NLP (Natural 
Language Processing) for NLP (Natural Language 
Programming) 321 Building procedures out of steps and 
loops, it would be fruitful to also contextualize procedural 
rendition by discussing the architecture of the descriptive 
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world that procedures animate. Among the various 
paradigms for computer programming– such as logical, 
declarative, procedural, functional, object-oriented, and 
agent-oriented – the object-oriented and agent-oriented 
formats most closely embody human story telling intuition. 
Consider the task of programming a MUD2 world by natural 
language description, and the sentence. A theory of 
programmatic semantics for descriptive natural language 
programming is presented in here, we overview its major 
features, and highlight some of the differences between 
descriptive and procedural rendition. These features are at 
the core of the Meta for natural language programming 
system that can render code following the descriptive 
paradigm, starting with a natural language text. 
 

2.1 Syntactic Correspondences 
There are numerous syntactic correspondences between 
natural language and descriptive structures. Most of today’s 
natural languages distinguish between various parts of 
speech that taggers such as Brill’s can parse – noun chunks 
are things, verbs are actions, adjectives are properties of 
things, adverbs are parameters of actions. Almost all natural 
languages are built a top the basic construction called 
independent clause, which at its heart has a who-does-what 
structure, or subject-verb-direct Object-indirect Object 
(SVO) construction. Although the ordering of subject, verb, 
and objects differ across verb-initial (VSO and VOS, e.g. 
Tagalog), verb-medial (SVO, e.g. Thai and English), and verb-
final languages (SOV, e.g., Japanese), these basic three 
ingredients are rather invariant across languages, 
corresponding to an encoding of agent-method and method 
argument relationships. This kind of syntactic relationships 
can be easily recovered from the output of a syntactic parser, 
either supervised, if a Treebank is available, or unsupervised 
for those languages for which manually parsed data does not 
exist. Moreover, other ambiguity phenomena that are 
typically encountered in language, e.g. pronoun resolution, 
noun-modifier relationships, named entities, can be also 
tackled using current state-of-the-art natural language 
processing techniques, such as coreference tools, named 
entity annotators, and others. Starting with an SVO structure, 
we can derive agent-method and method-argument 
constructions that form the basis of descriptive 
programming. Particular attention needs to be paid to the 
ISA type of constructions that indicate inheritance. For 
instance, the statement Pacman is a character who ... 
indicates a super-class character for the more specific class 
Pacman. 2 A MUD (multi-user dungeon, dimension, or 
dialogue) is a multi-player computer game that combines 
elements of role-playing games, hack and slash style 
computer games, and social instant messaging chat rooms 
(definition from wikipedia.org). 322 R. Mihalcea, H. Liu, and 
H. Lieberman. 
 

 2.2 Scoping Descriptions 
Scoping descriptions allow conditional if/then rules to be 
inferred from natural language. Conditional sentences are 

explicit declarations of if/then rules, e.g. When the customer 
orders a drink, make it, or Pacman runs away if ghosts 
approach. Conditionals are also implied when uncertain 
voice is used, achieved through modals as in e.g. Pacman may 
eat ghosts, or adverbials like sometimes–although in the 
latter case the antecedent to theif/then is under specified or 
omitted, as in Some times Pacman runs away. 

 
Fig -1: The descriptive and procedural representations for 
the conditional statement When customer orders a drink, the 
bartender makes it. 
 
An interesting interpretative choice must be made in the 
case of conditionals, as they can be rendered either 
descriptively as functional specifications, or procedurally as 
if/then constructions. For example, consider the utterance 
When customer orders a drink, the bartender makes it. It 
could be rendered descriptively as shown on the left of 
Figure , or it could be proceduralized as shown on the right 
of the same figure. Depending upon the surrounding 
discourse context of the utterance, or the desired 
representational orientation, one mode of rendering might 
be preferred over the other. For example, if the story teller is 
in a descriptive mood and the preceding utterance was there 
is a customer who orders drinks, then most likely the 
descriptive rendition is more appropriate. 
 

2.3 Set-Based Dynamic Reference 
Set-based dynamic reference suggests that one way to 
interpret the rich descriptive semantics of compound noun 
phrases is to map them into mathematical sets and set-based 
operations. For example, consider the compound noun 
phrase a random sweet drink from the menu. Here, the head 
noun drink is being successively modified by from the menu, 
sweet, and random. One strategy in unraveling the 
utterance’s programmatic implications is to view each 
modifier as a constraint filter over these to fall drink 
instances. Thus the object a Random Sweet Drink From The 
Menu implies a procedure that creates a set of all drink 
instances, filters for just those listed in the Menu, filters for 
those having the property sweet, and then applies a random 
choice to the remaining drinks to select a single one. Set-
based dynamic reference lends great conciseness and power 
to NLP (Natural Language Processing) for NLP (Natural 
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Language Programming) 323 natural language descriptions, 
but a caveat is that world semantic knowledge is often 
needed to fully exploit their semantic potential. Still, without 
such additional knowledge, several descriptive facts can be 
inferred from just the surface semantics of a random sweet 
drink from the menu – there are things called drinks, there 
are things called menus, drinks can be contained by menus, 
drinks can have the property sweet, drinks can have the 
property random or be selected randomly. Later in this 
paper, we harness the power of set-based dynamic reference 
to discover implied repetition and loops.  
 
Occam’s Razor would urge that code representation should 
be as simple as possible, and only complexified when 
necessary. In this spirit, we suggest that automatic 
programming systems should adopt the simplest code 
interpretation of a natural language description, and then 
complexify, or dynamically refactor, the code as necessary to 
accommodate further descriptions. For example, consider 
the following progression of descriptions and the simplest 
common denominator representation implied by all 
utterances up to that step. 

a) There is a bar. (atom) 
b) The bar contains two customers. (unimorphic list of 

type Customer) 
c) It also has a waiter. (unimorphic list of type Person) 
d) It has some tools. (polymorphic list) 
e) The bar opens and closes. (class/agent) 
f) The bar is a kind of store. (agent with inheritance) 
g) Some bars close at 6pm, others at 7pm. (forks into 

two subclasses) 
Applying the semantic patterns of syntactic correspondence, 
representational equivalence, set-based dynamic reference, 
and scoping description to the interpretation of natural 
language description, object-oriented code skeletons can be 
produced. These description skeletons then serve as a code 
model which procedures can be built out of. Mixed-initiative 
dialog interaction between computer and storyteller can 
disambiguate difficult utterances, and the machine can also 
use dialog to help a storyteller describe particular objects or 
actions more thoroughly. The Metafor natural language 
programming system implementing the features highlighted 
in this section was evaluated in a user study, where 13non-
programmersand intermediate programmers estimated the 
usefulness of the system as a brainstorming tool. The non-
programmers found that Metafor reduced their 
programming task time by 22%, while for intermediate 
programmers the figure was 11%. This result supports the 
initial intuition from and that natural language programming 
can be a useful tool, in particular for non-expert 
programmers.  

 
3. Example 
We can see in Table 1. two example programs that could be 
entered by a user. The code for the first program matches 
what is outputted by the current system, but the second is 
more complicated and does yet work correctly. Looking at 

the these examples, we can see a number of difficulties that 
make the problem hard, as well as form some intuitions that 
can help to solve the task. For example, the first line of both 
programs involves three function calls because of variable 
typing. 
ENGLISH PYTHON 
read in a number number=  
 
add 2 to the number  
print out the number  

int(sys.stdin.readline( ) 
.strip( )) 
number += 2 
print number 

read in 2 numbers 
number1 = 
 
 number2 =  
 
add them together  
print out the result  

 
int(sys.stdin.readline( ) 
.strip( )) 
int(sys.stdin.readline( ) 
.strip( )) 
result = number1 + number2 
print result 

Table 1: Some example English sentences and their Python 
translations. 
 
In Python, we must first read in a string, then strip away the 
newline character, and finally convert it to an integer. We 
can tell that integer conversion is required, firstly because of 
the name of the variable itself, and secondly, because a 
mathematical operation is applied to it later on. Of course, it 
is still ambiguous. The user may have expected the number 
to be a string, and to have the string 2 concatenated to what 
was read in. However, the code in Figure 1 is more likely to 
be correct, and if the user wants to use a string 
representation, then they could specify as much by saying: 
read in a number as a string.Another problem to deal with is 
the referencing of variables. In the first program, it is fairly 
easy to know that number is the same variable in all three 
sentences, but this is not as easy in the second. For the first 
sentence of the second program, the system needs to 
interpret 2 numbers correctly, and map it to multiple lines of 
code. Another complication is them, which references the 
previously mentioned variables. Finally, result, which does 
not appear in the second line, must still be part of the 
equivalent code, so that it can be used later. However, we do 
not want to restrict the vocabulary available to a user, or 
force them to construct sentences in a specific way, as is the 
case for existing restricted natural languages (Fuchs and 
Schwitter, 1996). Of course, this means that we must then 
deal with the inherent ambiguity and the great breadth of 
unrestricted natural English. For this reason, we employ 
wide-coverage syntactic and semantic processing, that is 
able to process this extensive range of inputs. In order to 
resolve ambiguities, we can apply the intuitions we have 
described above. We may not be sure that the number 
should be treated as an integer, but this is more likely than 
treating it as a string. This is the conclusion that our system 
should come to as well. 
 

4. Background 
Clearly, the task we are undertaking is not trivial. Though 
there are a number of related systems to the one we 
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propose, which have had success implementing a natural 
language interface for some task. 
 

4.1. Natural Language Interfaces to Databases 
The most popular task is a Natural Language Interface for a 
Database (NLIDB) (Androutsopoulos et al., 1995). This is 
because databases present a large amount of information, 
which both novice and expert users need to query. A specific 
query language such as SQL must be used, which requires 
one to understand the syntax for entering a query, and also 
the way to join the underlying tables to extract data that is 
needed. A NLIDB simplifies the task, by not requiring any 
knowledge of a specific query language, or of the underlying 
table structure of the database. We can see how this is 
similar to the English programming system that we are 
constructing. Both take a natural language as input, and map 
to some output that a computer can process. There are a 
number of problems that exist with NLIDBs. Firstly, it is not 
easy to understand all the ambiguity of natural language, and 
as such, a NLIDB can simply respond with the wrong 
answers. As a result of this, many NLIDBs only accept a 
restricted subset of natural language. For example, in the 
NLIDB PRE (Epstein, 1985), relative clauses must come 
directly after the noun phrases they are attached to.One 
feature of many NLIDBs, is the ability to engage the user in a 
dialogue, so that past events and previously mentioned 
objects can be referenced more easily. Two examples of this, 
anaphora and elliptical sentences, are shown in Figure 2. 
Understanding that it refers to the ship, and that the female 
manager’s degrees are again the subject of the question, 
reduces the amount of effort required by the user, and 
makes the discourse more natural. We also intend to 
maintain a discourse between the user and the computer for 
our own system. 
 

 

Fig 2: An example of anaphora and an elliptical sentence 
This would also allow us to resolve much of the ambiguity 
involved in natural language by asking the user which 
possibility they actually meant. 
 
4.2.Early Systems 
One of the first natural language interfaces is SHRDLU 
(Winograd, 1972), which allows users to interact with a 
number of objects in what was called Blocksworld. This 
system is capable of discriminating between objects, 
fulfilling goals, and answering questions entered by the user. 

It also uses discourse in order to better interpret sentences 
from the user. There were also a handful of systems that 
attempted to build a system similar to what we describe in 
this paper (Heidorn, 1976; Biermann et al., 1983). Most of 
these used a restricted syntax, or defined a specific domain 
over which they could be used. Our system should have 
much greater coverage, and be able to interpret most 
instructions from the user in some way. More generally, we 
can look at a system that interprets natural language 
utterances about planetary bodies (Frost and Launchbury, 
1989). This system processes queries about its knowledge 
base, but is restricted to sentences that are covered by its 
vocabulary and grammar. It deals with ambiguous questions 
by providing answers to each possible reading, even when 
those readings would be easily dismissed by humans. With 
our system, we will determine the most likely reading, and 
process the sentence accordingly. 
 
4.3. Understanding Natural Language 
One thing that we have not yet considered is how people 
would describe a task to be carried out, if they could use 
English to do so. The constructs and formalisms required by 
traditional programming languages do not apply when using 
a natural language. In fact, there are many differences 
between the way non-programmers describe a task, to the 
method that would be employed if one were using a typical 
programming language (Pane et al., 2001). Firstly, loops are 
hardly ever used explicitly, and instead, aggregate 
operations are applied to an entire list. These two methods 
for describing the same action are shown in Fig 4. 

 
Fig 3: Finding the sum of the values in a list 
Another point of difference comes in the way people use 
logical connectives such as AND and OR, which are not 
neccesarily meant in the strictly logical way that is the case 
when using a programming language. There are also 
differences in the way that people describe conditions, 
remember the state of objects, and the way they reference 
those objects.There are actually many ways in which natural 
language constructions map onto programming concepts. 
These programmatic semantics (Liu and Lieberman, 2004) 
can be seen in syntactic types, where nouns map to objects 
or classes, verbs map to methods, and adjectives to 
attributes of the classes. Using these concepts could allow us 
to more easily understand an English sentence, and map it to 
a corresponding code output. Metafor (Liu and Lieberman, 
2005) is a system that uses these ideas, taking a natural 
language description as input. As output, the system 
provides scaffolding code, that is, the outline for classes and 
methods, and only a small amount of actual content. The 
code is not immediately executable, but can help the 
programmer in getting started.   
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Natural Java (Price et al., 2000) is another natural language 
programming system that allows users to create and edit 
Java programs using English commands. Each sentence in 
the natural language input given to the system is mapped to 
one of 400 manually created case frames, which then 
extracts the triggering word and the arguments required for 
that frame. The frame can generate a change in the Abstract 
Syntax Tree (AST), an intermediate representation of the 
code, which is turned in Java code later. This system has a 
number of problems that we intend to improve on. Firstly, it 
can only handle one action per sentence. Our prototype can 
detect multiple verbs in a sentence, and generate code for 
each of them. Also, the AST representation Natural Java uses 
makes it hard to navigate around a large amount of code, 
since only simple movement operations are available. 
Another problem with Natural Java is that it maps to specific 
operations that are included in Java, rather than more 
general programming language concepts. This means that it 
is not adaptable to different programming languages. We 
intend to be more language-neutral. A user of our system 
should not need to look at the underlying code at all, just as a 
programmer writing in C does not need to look at the 
machine code. 
 

5. English Code Corpus 
In order to investigate the way that people would use 
English to describe a programming task, we  licited responses 
from programmers, asking them to describe how they would 
solve sample tasks. These tasks included finding the smallest 
number in a list, splitting a string on a character and finding 
all primes less than 100. The respondents were all 
experienced programmers, since computer science staff 
were all that were easily available. As a result of this, they 
tended to impose typical programming constructs on what 
they wanted to do, rather than using a simpler English 
sentence. For example, one respondent wrote For each 
number in the list compare to min., when Compare each 
number in the list to the min. is more straightforward. This 
demonstrates quite well the way that programming 
languages force us to use a specific unnatural syntax, rather 
than the freer style that a natural language allows. The 
corpus is comprised of 370 sentences, from 12 different 
respondents. They range in style quite significantly, with 
some using typically procedural constructs such as loops and 
ifs (complete with the non-sensical English statement: end 
loop in some cases), while others used a more declarative 
style. We have semi-automatically tagged the entire corpus 
with CCG categories (called supertags). This process 
consisted of running the parser on the corpus, and then 
manually correcting each parse. Corrections were required 
in most sentences, as the way people express programming 
statements varies significantly from sentences found in 
newspaper text.  
An example of this is in Fig5. This sentence uses an 
imperative construction, beginning with a verb, which is 
quite different from declarative sentences found in 
newspaper text, and the earlier example in Figure 4. We can 

also notice that the final category for the sentence is S[b]\NP 
, rather than simply S. Another difference is in the 
vocabulary used for programming tasks, compared to Wall 
Street Journal (WSJ) text. We find if, loop, and variables in 
the former, and million, dollars, and executives in the latter.  

 
Fig 4: A CCG derivation for an English programming 
instruction. 
Particular words can also have different grammatical 
functions. For example: print is usually a noun in the WSJ, 
but mostly a verb while programming. 
 

6. Combinatory Categorial Grammar 
Combinatory Categorial Grammar (CCG) is a typedriven, 
lexicalised theory of grammar (Steedman, 2000). Each word 
receives a syntactic category that defines its predicate-
argument relationship with surrounding words. We can see 
a simple example of this in Fig 4. Each word is assigned a 
category that defines how it is involved with other words in 
the sentence. These relationships are carried out through a 
number of rules, such as forward and backward application, 
which can be seen in the example. Additional rules such as 
composition and conjuction also allow the formalism to 
easily capture long-range dependencies. This is particularly 
important for our system, as the constructions used to 
describe programming instructions often contain non-
standard constituents such as extraction, relativization, and 
coordination. These possiblities result in a large number of 
interpretations, as a single word can be assigned a different 
category depending on how it is used, and the words that 
surround it. However, the application of statistical parsing 
techniques for CCG have shown that it is capable of 
performing wide coverage parsing at state-of-the-art levels 
(Clark and Curran, 2004). 
 

7. System Architecture 
The system architecture and its components are shown in 
Fig 5. 

 
Fig 5: The system architechture 
Firstly, the user will enter text that will be parsed by the CCG 
parser. We then translate the predicateargument structure 
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generated by the parser into a first-order logic 
representation of DRS predicates.This gives us a more 
generic representation of the sentence, rather than the 
specific wording chosen by the user. The final step is to 
generate the code itself. Throughout these three phases, we 
also intend to use a dialogue system that will interact with 
the user in order to resolve ambiguity in their input. For 
example, if the probability with which the parser gives its 
output is too low, we may ask the user to confirm the main 
verb or noun. This is especially important, as we do not 
intend for the system to be foolproof, but we do intend that 
the user should be able to solve the problems that they 
encounter, either through greater specification or 
rephrasing. At this current stage though, we have only dealt 
with basic functionality. Also, as we progress through each 
stage, we will follow the example previously shown in Fig 5. 
We will see how the processing we do manages to begin with 
this English input, and eventually output working Python 
code. 

 
8. Parse Phase 
In The Complete Lojban Language, Cowan provides both 
YACC and EBNF grammars for defining  legal Lojban 
utterances, however additional post-processing is required 
for properly handling many constructs, particularly optional 
terminators. Robin Lee Powell has done additional work to 
produce a more powerful Parsing Expression Grammar to 
represent Lojban. Because PEG allows for ordered choices, 
rather than the unordered choices of YACC and EBNF, 
Powell’s grammar can handle directly those cases which 
required post-processing in Cowan’s solutions. For the first 
analysis pass, the system utilizes a parser produced by 
Robert Grimm’s Rats! parser generator using Powell’s PEG 
grammar. Using the grammar, the parser verifies the 
statement is legal Lojban and annotates its syntactic 
structure. For example, the phrase “lo cribe poixekri 
cuklama” would be annotated as: 
“The output of the parser is then used to build an in-
memory n-tree of tokens for the next analysis phase.” 
 

9. Semantics 
From the syntactic representation of the sentence, we wish 
to build a more semantically abstracted version of what the 
user wants to translate into code. The advantage of this is 
that we can more readily extract the particular verbs and 
nouns that will become functions and their arguments 
respectively.  

 
Fig 6: The original, incorrect CCG derivation. 

 
Fig 7: Parse result 

 
Fig 8: DRS for example sentence 
Having a logical form also means we can apply inference 
tools, and thereby detect anomolies in the user’s 
descriptions, as well as including other sources of knowledge 
into the system. The ccg2sem system (Bos et al., 2004; 
Blackburn and Bos, 2005) performs this task, taking CCG 
parse trees as input, and outputting DRS logical predicates. A 
single unambiguous reading is always outputted for each 
sentence. The DRS for our example sentence is shown in Fig 
8. We can see that the verb (x1) is identified by an event 
predicate, while the agent (x4) and patient (x3) are also 
found. One particular discriminating feature of the 
imperative sentences that we see, is that the agent has no 
representation in the sentence. We can also find the 
preposition (x2) attached to the verb, and this becomes an 
additional argument for the function. This logical form also 
extracts conditions that would be found in if statements and 
loops very well. Fig 9 shows the DRSs for the sentence: If 
num is -1, quit. We can see the proposition DRS (the middle 
box) and the proposition itself (x2), which entails another 
verb (x3) to be interpreted. That is, we should carry out the 
verb quit (x1), if the proposition is true. Almost all if 
statements in the corpus are identified in this way. 

 
Fig 9: DRS for if statement 
 

10. Generation 
Having extracted the functional verb and its arguments, we 
then need to find a mapping onto an equivalent line of code. 
The simplest technique, which the current system uses, 
consists of a list of primitives, each of which describes the 
specific verb in question as well as a number of arguments. If 
the semantic information matches perfectly with a primitive, 
then the equivalent code is generated. At present, there exist 
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only a few primitives, shown in Figure 11. This system 
obviously has a number of weaknesses. Firstly, that if the 
user chooses a verb that is not listed in a primitive, then no 
code can be generated. Also, some primitives would be 
described with the same verb and arguments, but require 
different code, such as adding two numbers together, 
compared to adding one number to a list. This is similar to 
operator overloading, a feature present in a number of 
programming languages such as C++. We can also constrain 
the number of possibilities by using intuitive notions, such as 
not being able to output a previously unseen variable. Also, 
we can take advantage of the limited domain of 
programming. Rather than trying to list every sense of every 
verb in the English language together with its equivalent 
programming concept, we could create a much smaller set of 
programming primitives, and simply map everything onto 
one of those. Considering the small number of choices and 
the constraints mentioned above, this may be possible using 
a machine learning approach. Of course, we must consider 
what to do when a function that is not one of the primitives 
is referred to. In such a case, and assuming it can be 
detected, we believe the most sensible thing to do is to ask 
the user to describe how to carry out such a function, using 
the more basic primitive functions that already exist. Thus 
we would allow the creation of user-defined functions, just 
as a normal programming language would.  

 
Fig 10: Primitives used for generation 
Looking back to our example sentence once more, we 
proceed to extract the predicate (initialise) and argument 
information (min variable, 0) from the DRS. This maps to the 
initialise primitive in Figure 11. The matching code, stored in 

the primitive, then comes out as:  
This is clearly a suitable outcome, and we can say that for 
this case, the system has worked perfectly. 

 
10. CONCLUSIONS 
Programming is a very complicated task, and any way in 
which it can be simplified will be of great benefit. For this, a 
user may be asked to clarify or rephrase a number of points, 
but will not have to correct syntax errors as when using a 
normal programming language. Using modern parsing 
techniques, and a better understanding of just how 
programmers would write English code, we have built a 
prototype that is capable of translating natural language 
input to working code. More complicated sentences that 
describe typical programming structures, such as if 
statements and loops, are also understood. Here we have 
mentioned about the NLP and unrestricted NLP. This paper 
will help in programing all the things that are required in 
there, i,e..dealing with the areas all data and information are 
stored in the database. By using this the user can easily 

access the program, they does not need to remember the 
whole technical code or process to write the program like in 
java. They just need to write the tags in English code to 
execute the program and if error arises then autocompilled 
and corrected. 
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