
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 10 | Oct -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 430

Detecting Web Application Vulnerability using
Dynamic Analysis with Penetration Testing

Dr. T.Pandikumar 1 Tseday Eshetu 2

11 Phd, Department of Computer and Information Technology, Defence University, College of Engineering,
Debre Zeyit, Ethiopia

2 M-tech, Department of Computer and Information Technology, Defence University, College of Engineering,
Debre Zeyit, Ethiopia

---***---

Abstract - Web application is becoming so popular and
significant part of our daily lives. Due to the use of web
applications increasing day by day, the web application
security is becoming vital for user’s secret data. In parallel
to this, the number of reported web application
vulnerabilities is increasing dramatically. Most of the
vulnerabilities are the result of improper input validation.
This paper discuss the Tainted Mode Model (TMM) which
allows inter module vulnerabilities detection. Besides, the
seminar presents a new approach to vulnerability analysis
which incorporates advantages of penetration testing and
dynamic analysis. This approach effectively utilizes the
extended Tainted Mode Model.
Key Words: Web Applications, Vulnerability Analysis,
Penetration Testing, Dynamic Analysis, Taint Analysis

1. INTRODUCTION
Web application is a software program that runs on a
web server, it became more and more popular and
important part of our daily life than before. Web
application contains security vulnerability, attackers
have an over growing list of vulnerability to exploit
in order to maliciously gain access to web
application. Thus the task of securing web
applications is one of the most urgent for now.
According to, the most efficient way of finding
security vulnerabilities in web applications is manual
code review. This technique is very time-consuming,
requires expert skills, and is prone to overlooked
errors. Therefore security society actively develops
automated approach to finding security vulnerability.
This approach can be divided into two wide
categories Black box and White box testing. The first
approach is based on web application analysis from
the user side, assuming that source code of an
application is not available. The idea is to submit
various malicious patterns (implementing for
example SQL injection or cross-site scripting attacks)
into web application forms and to analyze its output
thereafter. If any application errors are observed an
assumption of possible vulnerability is made. This
approach does not guarantee neither accuracy nor

completeness of the obtained results. The second
approach is based on web application analysis from
the server side, with assumption that source code of
the application is available. In this case dynamic or
static analysis techniques can be applied. A
comprehensive survey of these techniques was made
by vigna et al., according to this survey several
statements could be made. [1]

 The most common model of input validation
vulnerabilities is the Tainted Mode model.
This model was implemented both by means
of static or dynamic analysis.

 Another approach to model input validation
vulnerabilities is to model syntactic structure
for sensitive operations arguments. The idea
behind this is that the web application is
susceptible to an injection attack, if syntactic
structure for sensitive operation arguments
depends on the user input. This approach
was implemented by means of string analysis
in static and it was applied to detect SQLI and
XSS vulnerabilities in PHP.

 One of the main drawbacks of static analysis
in general is its susceptibility to false
positives caused by inevitable analysis
imprecisions. This is made worse by dynamic
nature of scripting languages. However, static
analysis techniques normally perform
conservative analysis that considers every
possible control path.

1.1 TAINTED MODE MODEL
Taint mode is a way of making your code more secure. It
means that your program will be fussier about data it
receives from an external source. External sources include
users, the file system, the environment, locale information,
other programs and some system calls.
 Dynamic and static analysis uses Tainted Mode model for
finding security vulnerabilities that cause improper input
validation.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 10 | Oct -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 431

According to, following assumptions were made within
Tainted Mode Model:
1. All data received from the client via HTTP-requests is
untrustworthy (or tainted).
2. All data being local to the web application is
trustworthy (or untainted).
3. Any untrustworthy data can be made trustworthy by
special kinds of processing, named sanitization with these
assumptions made; security vulnerability is defined as a
violation of any of the following rules:
1. Untrustworthy (tainted) data should not be used in
construction of HTTP responses.
This prevents cross site scripting attacks.
2. Untrustworthy (tainted) data should not be saved to
local storages. This prevents possible construction of
HTTP responses from these sources in future.
3. Untrustworthy (tainted) data should not be used in
system calls and in construction of commands to external
services such as database, mail, etc. This prevents most of
injection attacks.
4. Untrustworthy (tainted) data should not be used in
construction of commands that would be passed as input
to interpreter. This prevents script code injection attacks.
[2]

2. Dynamic Analysis Testing
A Dynamic analysis test communicates with a web
application through the web front-end in order to identify
potential security vulnerabilities and architectural
weaknesses in the web application. Unlike source code
scanners, a dynamic analysis program doesn't have access
to the source code and therefore detects vulnerabilities by
actually performing attacks.[2]
A dynamic analysis security scanner can facilitate the
automated detection of security vulnerabilities within a
web application. A dynamic analysis test is often required
to comply with various regulatory requirements. Dynamic
analysis scanners can look for a wide variety of
vulnerabilities, including:

-Site Scripting, SQL
Injection, etc.)

lems

3. PENTETERATION TESTING
A penetration test, occasionally called as pen-test, is a
method of evaluating the security of a computer system or
network by simulating an attack from malicious outsiders
(who do not have an authorized means of accessing the
organization's systems) and malicious insiders (who have
some level of authorized access). The process involves an
active analysis of the system for any potential

vulnerabilities that could result from poor or improper
system configuration, either known and unknown
hardware or software flaws, or operational weaknesses in
process or technical countermeasures. This analysis is
carried out from the position of a potential attacker and
can involve active exploitation of security vulnerabilities.
Penetration testing approach is based on simulation of
attacks against web applications. Currently, penetration
testing is implemented as black box testing. A vulnerability
assessment simply identifies and reports noted
vulnerabilities, whereas a penetration test attempts to
exploit the vulnerabilities to determine whether

unauthorized access or other malicious activity is possible.
Penetration testing typically includes application security
testing as well as controls and processes around the
applications.

Figure 1: Visualization of vulnerability in the application
[2]

3.1 Conducting Penetration Testing
Penetration testing is not merely the serial execution of
automated tools and generation of technical reports as it is
frequently viewed. It should provide a clear and concise
direction on how to secure an organization’s information
and information systems from real world attacks.
One critical factor in the success of penetration testing is
its underlying methodology. A systematic and scientific
approach should be used to successfully document a test
and create reports that are aimed at different levels of
management within an organization. It should not be
restrictive to enable the tester to fully explore his
intuitions.
Generally, penetration testing has three phases: test
preparation, test, and test analysis as shown in Figure 2.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 10 | Oct -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 432

Figure 2: Penetration Testing Methodology [6]

All the necessary documents for the test are organized and
finalized during the test preparation phase. The testers
and the organization meet to decide the scope, objectives,
timing, and duration of the test. Issues such as information
leakages and downtime are resolved and put into legal
agreement document. Other legal agreements that are
deemed necessary are concluded and signed during this
phase. The bulk of the penetration testing process is done
during the test 12
phase. This phase involves the following steps:
information gathering, vulnerability analysis, and
vulnerability exploits.

3.2 Penetration Test Process
The Penetrator performs information discovery via a wide
range of techniques that is, databases, scan utilities and
more in order to gain as much information about the
target system as possible. These discoveries often reveal
sensitive information that can be used to perform specific
attacks on a given machine [2]. Development process in
such a way that findings can help improve design,
implementation, and deployment practices

Figure 3: Penetration Testing Process [2]

4. CAUSES OF VULNERABILITIES
All vulnerabilities identified in Web applications, problems
caused by unchecked input which are recognized as being
the most common. To exploit unchecked input, an attacker
needs to achieve two goals:

 Inject malicious data into Web
applications.
Common methods used include:

o URL manipulation: use specially crafted
parameters to be submitted to the Web
application as part of the URL.

o Hidden field manipulation: set hidden fields of
HTML forms in Web pages to malicious values.

o HTTP header tampering: manipulate parts of
HTTP requests sent to the application.

o Cookie poisoning: place malicious data in cookies,
small files sent to Web-based applications.

 Manipulate applications using
malicious data
Common methods used include:

o SQL injection: pass input containing SQL
commands to a database server for execution.

o Cross-site scripting: exploit applications that
output unchecked input verbatim to trick the user
into executing malicious scripts.

o HTTP response splitting: exploit applications that
output input verbatim to perform Web page
defacements or Web cache poisoning attacks.

o Path traversal: exploit unchecked user input to
control which files are accessed on the server

5. CONCLUSIONS
This paper presents a new approach to automatic
penetration testing by leveraging it with knowledge from
dynamic analysis. Most of vulnerabilities result from
improper or none input validation by the web application.
Most existing approaches are based on the Tainted Mode
vulnerability model which cannot handle inter-module
vulnerabilities. Vulnerability management should be
considered a priority given the sophisticated malware
targeting client PCs inside the organization.

ACKNOWLEDGEMENT
I would like to thank my advisor Dr. T. PANDI KUMAR for
the suggestions, ideas, and advices during the
development of this work. Especially, I thank him for his
consistent guidance and encouragement throughout my
work. The achievement of this paper work would not have
been possible without his help.

REFERENCES

[1] T.Sofia and R.Kannan ―detecting security
vulnerabilities in web applications using dynamic analysis
with penetration testing‖ International Journal of
Innovative Science and Applied Engineering Research,
Volume 13, Issue 40 Ver. II (Jan. 2015)
[2] Sreenivasa Rao and Kumar N “web application
vulnerability detection using dynamic analysis with

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 10 | Oct -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 433

penetration testing” International Journal of Enterprise
Computing and Business Systems, Vol. 2 Issue 1 January
2012
[3] Deven Gol, Nisha Shah and Priyank Bhojak ―Web
Application security tool to identify the different
Vulnerabilities using RUP model‖ International Journal of
Emerging Trends in Electrical and Electronics Vol. xx
Issue. xx, May. 2015
[4] Mahin Mirjalili, Alireza Nowroozi, and Mitra Alidoosti
―A survey on web penetration test‖ ACSIJ Advances in
Computer Science: an International Journal, Vol. 3, Issue 6,
No.12 , November 2014 ISSN : 2322-5157
[5] G. Bacudio, Xiaohong Yuan, and Bei-Tseng Bill Chu ―an
overview of penetration testing‖ International Journal of
Network Security & Its Applications (IJNSA), Vol.3, No.6,
November 2011
[6] Farkhod Alisherov A., and Feruza Sattarova Y.
―Methodology for Penetration Testing‖ International
Journal of Grid and Distributed Computing Vol.2, No.2,
June 2009
[7] Kozlov D, and Petukhov A. ―Implementation of Tainted
Mode approach to finding security vulnerabilities for
Python‖ International Journal of Network Security & Its
Applications (IJNSA), Vol.3, No.7, November 2013
[8] J. Bau, D. Gupta, and J. C. Mitchell. ―Automate Black-
Box Web Application Vulnerability Testing‖. In
Proceedings of the IEEE Symposium on Security and
Privacy, 2012.

BIOGRAPHIES

My name is Tseday Eshetu Belayneh

I received my BSc. Degree in Information

Communication Technology (ICT) in 2008.

Currently am taking my M –tech in Computer

and information technology from Defense

University College of Engineering. In 2009,

I joined Rift Valley University to work as An

Instructor and I am still working there in this

position.

