
          International Research Journal of Engineering and Technology (IRJET)               e-ISSN: 2395 -0056 

               Volume: 03 Issue: 10 | Oct-2016                      www.irjet.net                                                               p-ISSN: 2395-0072 

 

© 2016, IRJET       |       Impact Factor value: 4.45        |       ISO 9001:2008 Certified Journal       |        Page 403 
 

CHARACTERIZATION AND PREDICTIVE OUTPUT BEHAVIOR OF SHAPE 

MEMORY ALLOY 

Mr. Mohd Azaruddin1, Dr. B M Rajaprakash2 

 
1M.E Scholar, Manufacturing Science and Engineering, UVCE Bangalore 

2 Professor and Chairman, Department of Mechanical Engineering, UVCE Bangalore 
 

Email: Mdazaruddin.mudgal@gmail.com    bmruvce@yahoo.co.in 
 
---------------------------------------------------------------------***--------------------------------------------------------------------- 

 

Abstract - This paper makes an attempt to develop 
constitutive model for Shape Memory Alloy (SMA) material 
behavior using Artificial Neural Network. The output 
behavior of Shape Memory Alloys is highly non-linear and 
their thermo-mechanical properties depends on many 
variables such as Pre-strain, applied stress and temperature, 
these variables are also inter-dependent and characteristics 
are studied by controlling a variable while allowing the 
remaining variable to vary, determining the material 
coefficients. Artificial Neural Network is used to learn 
complex non-linear relationship and store the knowledge in 
their connection weights which can be optimize accordingly 
to meet up the desired results. Customized Tensometer is 
designed to carry out Tensile Testing of SMA Nitinol 
Specimen and to do corresponding data acquisition. The 
obtained dataset is dumped into the Back-Propagation 
training mode of ANN, to train the network and 
corresponding values of invariant variables found 
accordingly. An algorithm determining the values of 
invariant variables is stored up in NEURAL NETWORK 
TOOLBOX. The paper also explain a work carried out to 
determine via experimentation how certain parameters 
affect a helical SMA actuator’s performance through findings 
of correlations between the parameters of a helical SMA 
actuator and its resultant dynamic response. 

 
Keywords: Shape memory Alloy, Nitinol, Artificial 

Neural Network. Predictive Output behaviour, Non 
Linear Response, Reaction Times, Stroke Length. 
 

I. INTRODUCTION 
 

Shape Memory Alloys (SMAs) belongs to the class of Smart 
Materials. SMAs are actuators which have the capability to 
remember up to two trained shapes which they had 
previously occupied by proper mechanical and thermal 
actions. These materials can be deformed plastically 
beyond their elastic limit, but can regain their original 
shape back by heating them to certain temperature. These 
materials could able to sustain large inelastic strains which 

can be further recovered back by heating or unloading. 
Shape memory alloys can exhibit two different crystal 
structures or phases which is function of temperature and 
amount of the applied load. These two crystal structures 
includes are Martensite phase and Austenite phase. 
Martensite is the phase which is present on the low 
temperatures and is known as ‘product phase’ while the 
high temperature low stress stable phase is Austenite 
which is also known as ‘parent phase’ [1]. 
 
The applications of SMA are generally characterized in 
terms of specific property of material being used. The most 
common properties which are broadly used are either 
thermal shape memory or mechanical shape memory 
(super-elastic). These properties classifies the general 
categories of SMA applications [2]. The thermal ability of 
shape memory material which tend to change the shape 
imparts several categories of applications that can be 
summarized as follows: applications that makes use of 
change in shape to display motion, application which 
exhibit actuation and application which harness stresses so 
far generated from constrained recovery because of shape 
memory effect. 

 
I. GAP IN LITERARTURE 

 
Due to intense hysteresis and non-linearity in SMA 
response, it is so difficult to find a mathematical model 
which can exactly predict the SMA behaviour in general. 
The Neural Network’s great ability to learn nonlinear 
relations has made it one of the first choices in modelling 
complicated systems where analytical expressions cannot 
be found or could take a long time to be simulated [3]. 
Neural Network modelling can be classified under black 
box modelling methods since regardless of the system type 
it only needs the inputs to the system and the 
corresponding outputs to provide a model of the system. 
When responses of a system are presented to an 
appropriately adjusted neural network, the Neural 
Network extracts the relation between the data and stores 
it as the network weights. However, the training data need 
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to be chosen suitably, i.e. Contain sufficient information 
about the system for the Neural Network model to be as 
close to the true system as possible. The input-output set of 
the Neural Network should be chosen carefully according 
to the type of the system. In a simple system like a single-
input function, the suitable input and output for the 
network can be easily recognized. However, for more 
complicated systems like an SMA-actuated system, finding 
an appropriate set is not a trivial task and different neural 
networks with diverse input-output sets and various 
structures are to be designed [2]. 
 
Thus by intense literature study it is concluded that in 
order to design out a simple process carried out by a SMA 
material, a highly complicated, non-linear, transient 
Constitutive Equation is needed to be formulate. Thus its 
make a very difficult for a basic engineer to go through all 
such complications and understand the equation. 
Henceforth, it is recommended to propose an Artificial 
Neural Network which helps and analyse in prediction of 
results which can later on trained and retrieved as and 
when required. 
 
Furthermore, Shape memory alloy actuators strokes can be 
increased at the expense of recovery force via heat 
treatment to form compressed springs in their heat-
activated, austenitic state. Using heat treatment 
techniques, a SMA actuator can be programmed to be a 
specific shape in its heat activated austenite phase; some 
shapes are more useful than others to perform mechanical 
work. 

 
II. OBJECTIVES 

 
 The main aim of the paper is to develop a model 

which replaces the complex constitutive equations 
formulated by the various scientist describing the 
computation and non-linear behaviour of Shape 
memory alloys by a simple trained Back-
Propagation Neural Networks, predicting the 
succeeding and preceding motions of the material. 

 
As it is clearly depicted from the Gap in Literature survey 
of previous section, due to intense hysteresis and non-
linearity in Shape Memory Alloy response, it is so difficult 
to find a mathematical model which can exactly predict the 
SMA behaviour in general. The characteristics nature of 
Shape memory alloy highly non-linear and their thermo-
mechanical properties depends on many variables such as 
Pre-strain, applied stress and temperature. In turn, these 
variables are also inter-dependent. Henceforth in order to 
design a simple process carried out by a SMA material, a 
highly complicated, non-linear, transient Constitutive 
Equation is needed to be formulate. These Constitutive 
Equations are beyond the understanding level of basic 
engineering skills. Hence there required a methodology to 
overcome all these difficulties and to predict the complex 

output behaviour of shape memory alloy. The Neural 
Network’s great ability to learn nonlinear relations has 
made it one of the first choices in modelling complicated 
systems where analytical expressions cannot be found or 
could take a long time to be simulated. The proposed 
technique makes use of Artificial Neural Network method 
which is used to learn complex non-linear relationship and 
store the knowledge in their connection weights which can 
be optimize accordingly to meet up the desired results.  
 

 The paper also aims to determine via 
experimentation how certain parameters affect a 
helical SMA actuator’s performance through 
findings of correlations between the parameters 
of a helical SMA actuator and its resultant dynamic 
response. 

 
The experimentation mainly conducted to implicate, 
strokes of Shape memory alloy actuators can be increased 
at the expense of recovery force via heat treatment to form 
compressed springs in their heat-activated austenite phase 
to perform mechanical work. SMA wires also provide the 
highest recovery force, but unfortunately, have a low 
stroke; the recovery strain is typically less than 5%. Hence 
one option is proposed to amplify the stroke by shaping 
SMA wire into compressed helical springs. These springs 
can be made using straight wire with heat treatment 
techniques and do not require any amplification 
mechanisms, but as the internal stress is caused via 
torsional loading rather than axial loading, the stress is 
concentrated at the wire’s perimeter, rather than being 
evenly distributed along the wire’s cross-section. The 
recovery force decreases as a result. Furthermore, the 
dynamic response and energy efficiency is worsened, 
mainly due to the power exploitation, under torsional 
loading, of the material in the centre of the solid section, 
which adds to the cooling time and to the power 
consumption without contributing to the strength. 
 
 

III. SCOPE OF THE WORK 
 

Following are the some of the key areas where much 
attention is focussed on the project. 

 A specially designed Tensometer is build up to 
make out the tension testing of Nitinol specimen 
and corresponding data acquisition is done with 
the help of compatible controller linked with 
Computer.  

 The Back-Propagation training mode of ANN is 
used to train the network and corresponding 
values of invariant variables found accordingly.  

 The experimentation is also done to focus the 
helical SMAs performance namely the actuator’s 
heating time, cooling time and stroke, and 
parameters. 
 



          International Research Journal of Engineering and Technology (IRJET)               e-ISSN: 2395 -0056 

               Volume: 03 Issue: 10 | Oct-2016                      www.irjet.net                                                               p-ISSN: 2395-0072 

 

© 2016, IRJET       |       Impact Factor value: 4.45        |       ISO 9001:2008 Certified Journal       |        Page 405 
 

IV. METHODOLOGY 
 

Following is the detailed view of procedure needed to be 
carry out in order to characterize and predict the output 
behavior of a SMA. 

 A standard test specimen of SMA material is 
prepared in two ways 

I. To determine non-linear response - 
characterize material properties by means 
of standard Axial Tension. 

II. To predict the output behaviour- implicate 
actuator response for various inputs. 
 

DETERMINATION OF NON-LINEAR RESPONSE 

 A Tensometer is build up by making use of all 
necessary components and tension test is 
performed by varying temperature of SMA Nitinol 
specimen.  

 The readings of conducted tests are accessed or the 
data acquisition is done by a compatible controller 
tool and datasets are prepared for various values of 
inputs and corresponding outputs. 

 With the above datasets, the Neural Network model 
is prepared and the training is done accordingly by 
Back-Propagation training mode and algorithm is 
saved in NEURAL NETWORK TOOLBOX and can be 
used to determine the SMA parameters. 

 For any values of inputs, the corresponding output 
can be taken out as per Back-Propagation trained 
network. 

 

PREDICTION OF OUTPUT BEHAVIOUR 

 A SMA helical spring actuator of different wire 
diameter and spring diameters are prepared and 
are subjected to different bias loads. 

 The apparatus was controlled using a specially 
coded PIC 18 Micro-Controller. The direct current 
was turned on and off using the Micro-Controller 
and a transistor. 

 To sense the position of the bias mass, an ultrasonic 
ranger was used. When the Micro-Controller 
detected a stationary bias mass, its input to the 
transistor switched from high to low or vice versa.  

 This experimentation mainly done to focus the 
helical SMAs performance namely the actuator’s 
heating time, cooling time and stroke, and 
parameters affect them. 

 Trials (one trial being one individual spring) were 
performed for each investigation, and every SMA 
spring was activated on and off for 5 cycles. 

 Only one variable would be manipulated at one 
time, while the remaining variables would be 
controlled. 
 

V. EXPERIMENTAL SET UP 
 

A. DETERMINATION OF NON-LINEAR RESPONSE 
 
The Tensometer setup, shown in Fig 1 has two fixed end 
plated where two cylindrical bars that are fixed to the end 
plates. Two sliding bars with fixtures to hold the SMA wire 
are mounted on the cylindrical bars, where one end is fixed 
and other end is allowed to slide over the cylindrical rod. 
 

 

Fig 1: Tensometer Set up 

SMA wire is fixed between fixtures, between the fixed end 
and movable end. The movable rod is connected to a lead 
screw, which has mechanical rotary actuator controls 
loading rate. Lead screw arrangement is used to transfer the 
force from rotary actuator from movable end. As a tensile 
force acts on the wire when the movable end is pulled as the 
actuator is subjected to a clockwise rotation. 
 
Electrical resistive heating controls temperature of the SMA 
wire and load is measured using a load cell. The 
displacement of the wire is measured by LVDT. The core of 
the LVDT is mounted on the movable end, which indicates 
the displacement of the wire, and the body of the LVDT is 
fixed to the base of the setup. To avoid the influence of the 
surroundings, the wire should be kept in an enclosed 
chamber. Current supplied is measured and it is calibrated to 
the temperature values. Thermo-mechanical characteristics 
of SMAs are studied by keeping temperature as constant, and 
strain value is measured for the corresponding change in 
stress during loading and unloading. The temperature kept 
as constant during loading and unloading. Wire, which is to 
be tested, is heated above austenite finish temperature and 
cooled to obtain 100% Martensite and to remove the 
stresses developed already and it is fixed between two ends 
of the fixtures after measuring the length of the wire. 
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B. PREDICTIVE OUTPUT BEHAVIOUR 
 

The overall testing apparatus is pictured in Fig 2, while Fig 3 
gives a close-up of the electronic components (for an 
electronic schematic of the apparatus). The apparatus was 
controlled using a PIC 18 Micro-Controller. The power 
source had variable current settings, allowing the SMA wire 
to be activated using direct current of a constant magnitude. 
The direct current was turned on and off using the Micro-
Controller and a transistor. To sense the position of the bias 
mass, an ultrasonic ranger was used. The code was written 
to detect when the bias mass was stationary, i.e., when a 
transformation has ended. When the Micro-Controller 
detected a stationary bias mass, its input to the transistor 
switched from high to low or vice versa.  

 
During a trial, the Micro-controller code was activated. The 
transistor’s base was initially turned high, allowing direct 
current to activate a MA transformation in a SMA spring. 
Taking the data from the ultrasonic sensor, the controller 
determined when the transformation is complete, upon 
which the Micro-Controller turned the transistor’s base low, 
allowing the SMA wire to cool back to its martensite form. 
The microprocessor logged the elapsed time, i.e., the heating 
time. When the SMA wire finished its AM transformation as 
determined by the micro-controller, the transistor’s base 
was turned to high, and the micro-controller logged the 
elapsed time, i.e., the cooling time. As mentioned, the 
martensite lengths, austenite lengths and strokes were 
measured using a stationary ruler by the operator. 

 

 

Fig 2: overall testing apparatus 

Each trial consisted of 5 cycles, giving 5 heating times, 
cooling times, martensite spring lengths, austenite spring 
lengths and stroke measurements. 5 cycles were 
performed not only for repeatability, but to also observe if 
the results changed after subsequent activation cycles due 
to training. 
 

 

Fig 3: Close-up of the electronic components 

VI. RESULTS AND DISCUSSION 
 

C. UNIAXIAL TENSION TEST OBSERVATION 
 

The Nitinol wire specimen of 0.8 mm and 1.0 mm underwent 
Tension Test under customized designed Tensometer, as 
described well in the previous chapter. The test is carried 
out in three different levels of temperature viz, 27 °C, 35 °C 
and 40 °C. The following Stress-Strain Curves were observed. 

 

  

Fig 4: Strain Curve for Nitinol at 27 °C 

  

Fig 5: Strain Curve for Nitinol at 35 °C 
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Fig 6: Strain Curve for Nitinol at 40 °C 

  

Fig 7: Combined Strain Curve for Nitinol at all Working 

Temperature 

The module i.e ratio of Stress to Temperature, is found to be 
increased with increase in temperature due to phase 
transformation. At relatively lower temperature, the 
material requires a less stress to get deform, and as and 
when temperature increases to a higher value, approaching 
towards austenitic range, the specimen about to regain the 
shape as it was about during that austenitic memory. Hence 
stress required to produce deformation will be maximum at 
higher temperature.   

 
D.  NEURAL NETWORK TRAINING 

 
 

Fig 8: Validation Performance Curve 

The above step represents the validation of the network to 
create a regression plot, which shows the relationship 
between the outputs of the network and the targets. The first 
three plots the represents training, validation and testing 
data respectively. The R value is an indication of the 
relationship between output and targets. On an Overall 
Average, the R value found to be 0.87 signifying almost near 
linear relationship between outputs and targets.  
 

E. PREDICTION OF OUTPUT BEHAVIOUR  
 

 WIRE DIAMETER 
 

  

Fig 9: Plot of Wire Diameter V/S Time 

The reaction times were expected to increase in relation to 
an increased wire diameter, as the increase in volume leads 
to an increased thermal heat capacity, since the experimental 
results generally supported this correlation. 

 
With regards to the stroke, had the change in moduli of 
rigidity been the only factor between phase transitions, the 
stroke would decrease with respect to an increasing 
diameter. As the wire diameter increases, the SMA spring’s 
internal shear stress decreases, which could limit the 
amount of martensite that can be de-twinned by the bias 
force and, consequently, limit the stroke in Fig 10. 
 

  

Fig 10: Plot of Wire Diameter V/S length 
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 SPRING DIAMETER 
 

  

Fig 11: Plot of Spring Diameter V/S Time 

For the reaction times, projected that the heat times and 
cooling times would respectively increase and decrease with 
an increasing spring diameter. Larger spring diameters have 
a larger internal stress; larger stresses in turn cause the 
transition temperatures to increase. More time is thus 
needed to reach the MA transition temperatures during 
heating, while less time is needed to reach the AM transition 
temperatures during cooling. 

 

 

Fig 12: Plot of Spring Diameter V/S Length 

Regarding the strokes as plotted on Fig 12, like the wire 
diameter manipulation, the stroke increased as the inner 
spring diameter was increased, but converged to a certain 
value, likely due to the increase in internal stress. Hence, 
permanent strain would therefore be expected and, thus, 
limit the maximum recoverable strain. 

 
 BIAS FORCE/WEIGHTS 

 
An increased bias force would induce a greater internal 
shear stress and, thus, increase the wire’s transition 
temperatures throughout the wire’s radius due to 
superelasticity. This projection was observed in the 
experimental results as plotted in the Fig 13.  
 

 

  

Fig 13: Plot of Weight V/S Time 

  

Fig 14: Plot of Weight V/S Length 

Like the wire diameter and spring diameter manipulations, 
the stroke appears to converge to a set value. Also, like the 
wire diameter and spring diameter investigations, the cause 
of this convergence is likely due to the recoverable shear 
strain limit. At larger bias forces, the internal stress is 
greater and induces the martensite diameter to decrease and 
better disperse the stress. As already mentioned, the smaller 
martensite diameter would lead to a decreased elastic 
stroke, which in turn may have contributed to the stroke’s 
convergence. 

 
 DIRECT CURRENT 

 

  

Fig 15: Plot of Current V/S Time 
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For the reaction times, with respect to an increasing direct 
current magnitude, it was predicted that the heat times 
would decrease due to the increase of thermal energy, while 
the cooling times would remain constant, as the 
transformation would stop at the same final temperature 
regardless of direct current magnitude. Both predicted 
patterns were generally correct. 

 

  

Fig 16: Plot of Current V/S Length 

With regards to the strokes, it was anticipated that the 
strokes would be unaffected by a change in direct current, 
providing that the current is sufficient to induce the 
transformation.  

 
VII. CONCLUSION 

 
The proposed work carefully examine the difficulties faced 
by the engineers in order to sort out various constitutive 
equations defined by the different scientists across the globe 
in computing and modelling of Shape Memory Alloys. Hence 
it is found easy to develop a methodology to predict the 
output without using Constitutive Equation just by using 
ANN in order to model the SMA and later on to analyse the 
given specimen using trained model. Artificial Neural 
Network which is used to learn complex non-linear 
relationship and storing the knowledge in their connection 
weights, can be optimize accordingly to meet up the desired 
results. As it was mentioned in the objective of the work to 
find correlations between a SMA spring’s parameters and 
their dynamic response, hence this work successfully tested 
how variables i.e., wire diameter, spring diameter, bias force, 
direct current magnitude and transition temperature, 
independently affect the performance of SMA actuators in 
relation to their reaction times and strokes. 
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