
 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 10 | Oct -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 873

Generate Test Cases

From UML Use Case and State Chart Diagrams

 Shubhangi Jagtap1, Vishwas Gawade2, Rahul Pawar3, Savita Shendge4, Prof. Pravin Avhad5

1Savitribai Phule Pune University,
Dept. of computer engineering, H.S.B.P.V.T.COE, Kashti, Maharashtra, India

shubhangijagtap1992@gmail.com

2Savitribai Phule Pune University,
Dept. of computer engineering, H.S.B.P.V.T.COE, Kashti, Maharashtra, India

vishwasgawade96@gmail.com

3Savitribai Phule Pune University,
Dept. of computer engineering, H.S.B.P.V.T.COE, Kashti, Maharashtra, India

pawarrahul00010@gmail.com

4Savitribai Phule Pune University,
Dept. of computer engineering, H.S.B.P.V.T.COE, Kashti, Maharashtra, India

 shendgesavita801@gmail.com

5Savitribai Phule Pune University,
Professor, Dept. of computer engineering, H.S.B.P.V.T.COE, Kashti, Maharashtra, India

pravin123.avhad@gmail.com

---***---
Abstract - Software testing is a part of software
development process. However, this part is the first one to
miss by software developers if there is a limited time to
complete the project. Software developers often finish their
software construction closed to the delivery time, they
usually don’t have enough time to create effective test cases
for testing their programs. Creating test cases manually is a
huge work for software developers in the rush hours. A tool
which automatically generates test cases can help the
software developers to create test cases from software
designs/models in early stage of the software development
(before coding).

In this project, test cases generation technique has been
proposed for UML diagrams use case and state chart. So that
test data can be generated before coding, so it will be useful
for the tester because, Test Engineering covers a large
amount of activities to ensure that the final product achieves
some quality goal.

Key Words: Software Testing, Test cases, Tools, Use
case diagram, State chart diagram, Symbol, Generate
test cases, Excel chart, Tree structure, Text box.

1. INTRODUCTION

Software testing is an important activity to assure the
quality of software. Unfortunately, software testing is very
labor intensive and very expensive. It can take about 50
percent’s of total cost in software developing process.
Automated test data generation reduces an effort of software
developers for creating test cases.

The software testers may need to spend a longer time
using many test cases if the test data used are not of high
quality. Therefore, a performance of executing test data is an
important issue to reduce the testing time. Software testing
is usually the first part of software development stages,
which software developers decide to omit when there is a

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 10 | Oct -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 874

limited time to deliver the software. In other word,
developers may not have enough time after they finished
their coding to create test cases to test their code.
Generating test cases before coding can resolve these
problems. This not only helps developers to test their
program when they finish coding but also controls the
developers to program the software as defined in the
software specification

complex operation modeling etc. Main advantage of
this model is its simplicity and ease of understanding the
low of logic of the system. However, ending test informa-
tion from use case and state chart is a formidable task.

In this work, we propose an approach for generating

test cases using UML 2:0 use case diagrams and state chart
diagram

We are going to use following UML Diagrams:-

1. Use Case Diagram

2. State Chart Diagram

RELATED WORK.

 Software testing plays a major role in software

development process because it accounts for a large part of

the development cost. Moreover, manual testing technique

always makes a problem. This project proposes the

automatic testing technique to solve partially the testing

process by generating test cases from UML Diagram Use

Case and State Chart.

Firstly, we will create our own tool for drawing UML

Diagram Use Case and State Chart then we transform this

diagram into intermediate tree, called Testing Flow Tree.

Secondly, we generate test case using the testing criteria
that is the coverage of the state and transition of diagrams.
Finally, we will interpret these test cases in Microsoft
Office Excel (XLS) format as output.

1. PROPOSED WORK

Creating test cases manually is a huge work for software

developers in the rush hours. A tool which automatically

generates test cases can help the software developers to

create test cases from software designs/models in early

stage of the software development

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 10 | Oct -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 875

Figure 1. Proposed Test Case Generation Technique

2. Test Case Generation for Use
Case Diagram with necessary
information

Using use cases to generate test cases can help to launch
the testing process early in the development life cycle and
also help with testing methodology.

In a software development project, use cases define
system software requirements. Use case development begins
early on, so real use cases for key product functionality are
available in early iterations. A use case fully describes a
sequence of actions performed by a system to provide an
observable result of value to a person or another system
using the product under development.

Use cases tell the customer what to expect, the
developer what to code, the tech- nical writer what to
document, and the tester what to test.

Test cases are key to the process because they identify
and communicate the conditions that will be implemented
in test and are necessary to verify successful and
acceptable implementation of the product requirements.
They are all about making sure that the product fulfills the
requirements of the system

3. Test Case Generation for State
Chart Diagram with necessary
information

Object oriented analysis and design methods offer a
good framework for behavior. A UML state chart (state
machine) describes the dynamics of a model element as it
changes its internal state as the reaction of receiving some
external stimuli. UML statE charts can describe the
behavior of a classifier (a class) or a behavioral feature (a
method of a class).

A state machine is a graph of states and
transitions that describes the response of an object to
the receipts of events. State machines are used for
specifying the full dynamic behavior of a single class of
objects. The diagrammatic presentation of a state
machine is a state chart diagram. A state chart attached to a
class specifies all behavioral aspects of the objects in that
class.

State chart diagrams comprise all the possible
scenarios for a given object. They emphasize the flow of
control from state to state.

Structure Identifier

Since the proposed approach aims to generate test cases
from any UML diagram, it becomes imperative to develop a
unified structure identifier capable of identifying the nodes

and edges in XMI files of UML diagrams. Therefore, if an
XMI file of any UML diagram is imported, the Elements
Mapper is responsible for identifying the correct diagram
source of the XMI file based on the descriptive attributes of
the various UML diagrams and then, correlates these
attributes to the corresponding diagram based on the
running procedures. The Feature Selector refines the
mapped elements to aid accurate identification of nodes
and edges in an XMI file. In the proposed approach,
mapping is executed by considering the nomenclature of
the various UML diagrams. The contents of an XMI file
consists of metametamodel, comprising of the XML viewer,
the element metamodel which provides the name and
version of the XMI file, XMI contents which consist of the
UML model and this model consists of XMI.id, UML
diagram name, and Namespace.ownedElement. The
requirement name and its attributes reside in the
Namespace.ownedElement. Consequently, in the proposed
approach, the metametamodel, XMI metamodel, model and
namespace elements were used to identify the structure of
XMI document across UML diagrams. In this research, the
nodes connote the requirements while the attributes
describing the expected functionalities of a requirement is
known as an edge. Therefore, to identify the structure of an
XMI file, labels of elements was used. The elements
associated with the UML IDs are Nodes while the attributes
of the elements are the Edges. Algorithm 1 was used to
determine distinct nodes and edges of XMI files which
accept XMIs as a input

1: Input: XMI txt.file of any UML diagrams
2: Ouput: Number of Nodes and Edges
3: Begin
4: for each element, visit the unique XMI IDs do
5: element = name 'A' visibility;
6: if element = ‘public’then isSp
7: add decision stack indicating a root

Node;
8: continue with next element;
9: end
10: prevPath element.descriptor.path;
11: newPath getPath (element);
12: if newPaththen≠ prevPath
13: prevName lastSegment(prevPath);
14: newName lastSegment(newPath);
15: SubNode getGeneralizationText(child node);
16: add decision stack indicating a sub Node;
17: continue with next element;

18: sort the root and sub nodes into XMI value

pair list;
19: end
20: if relation of nodes and sub nodes exist

(element)

21: then

22: order the relations in the generated list

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 10 | Oct -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 876

23 then
24: Create an ordered list of all relations;
25: Determine the length of relations;
26: label them edges then
27: add decision stack indicating edges;
28: end
29: end

30: from XMI value pair list

(element.attributes) then
31: Compute array of node and edges
32: end

Algorithm 1. Structure Identification

 Dependency Flow Tree (DFT) Generator

This component is responsible for building a

dependency flow tree based on the identified structure.
The dependency tree is built based on the number of
Nodes and Edges contained in an XMI file using
Algorithm 2. It verifies that the Nodes and Edges
corresponding to elements and attributes respective.

1: Input: Extracted artefacts;
2: Ouput: DFT
3: initTgt.DFT XMI file [L]
4: for i = 1 to L do

5: XMI file

(createN
odes.ele
ments;
edges.at
tributes
)

6: addElement (Nodes
[edge.attributeSize])

7: end for
8: ModelTgt(visitList

(element.descriptions, DFT)
9: for i = 1 to L do
10: XMI file = DFT

end for

The design model was constructed using ArgoUML tool
which support XMI file format. It includes class diagrams,
sequence diagrams, state charts and so on. The shared
model approach is used for test case generation. The same
model is used for extracting artefacts as well as for test
case generation. A transformation tool or some adaptor
transformers that is embedded in the proposed approach
can be used to translate abstract test case into an
executable or concrete test cases which uses certain
templates or mappings to ensure completeness between
the extracted artefacts and generated test cases.

1: Input: Dependency flow tree (DFT)
2: Output: Set of test cases
3: artefactsStack=Ø
4: decisionStack=Ø
5: for all elements and attributes of DFT do
6: while DFT == Nodes.Edges do
7: artefactsStack.push(DFT.contents) whiile
8: end for
9: for all elementsNodes do
10: artefactsStack.push edges
11: if artefactsStack[top].node≠

al||loop.node||
par.node||break.node||

12: then

13: decisionStack.push(artefa

ctsStack.top) =
elements.attributes
and label visited

14: else
artefcatsStack.top == Nodes.decisions

16: then
17: artefactsStack[top] = decisionStack[top] do

18: output.pop {pop elements and

attributes into artefactsStack}
19: end while

20: decisionStack.pop {Pop the

top element from
decisionStack}

21: else if artefactsStack[top] == ||alt.node|| break.node
|| loop node

22: then

23: decisionStack.push(artefcatsStack.pop)
24: for all nodes of DFT do
25: if nodes are not Marked Visited then
26: artefactsStack.push Nodes and

Edges
27: end if
28: end for
29: Print artefactstStack.decisionStack
30: end

Algorithm 3. Test Case Generation

1.Ex. Use case diagram

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 10 | Oct -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 877

Fig2. Banking system

2.Ex. State chart diagram

Fig3. People education status

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 10 | Oct -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 878

4. ADVANTAGES

1.Automated test data generation reduces an effort of

software developers for creating

 Test cases.

2. Reduce the cost and reduce the time of testing.

3. Meet the customer requirement and satisfaction since the

testing is applied from

 Starting phase of software development process.

4. Gives assurance about quality of software processes.

5. At design time, we are generating test cases due that we

are reducing 70 percent

 Testing work at this stage.

6. Automated test data generation reduces an effort of

software developers for creating

 Test cases.

7. Reduce the testing time after coding.

5. CONCLUSION

In this paper, we have presented an approach for generating

test cases from use case and state chart at use case scope.

Our approach is significant due to the following reasons.

First, our approach is capable to detect more faults like faults

in loop,

synchronization faults than the existing approaches. Second,
test case generated in our approach may help to identify
location of a fault in the implementation, thus reducing
testing effort. Third, our model-based test case generation
approach inspires developer to improve design quality, and
faults in the implementation early, and reduce software
development time. Fourth, it is possible to build an
automatic tool following our approach. This automatic tool
will reduce cost of software development and improve
quality of the software.

In the present submission, we have focused only use

case and state chart of a single use case at a time. However,

use case of multiple which are related to each other by

various relationships such as, include, extend, generalization

/ specialization can be considered, which we plan to take up

in our next work.

This project proposes the automatic testing technique to
solve partially the testing process by generating test cases
from UML Diagram Use Case and State Chart. A tool which
automatically generates test cases can help the software
developers to Create test cases from software
designs/models in early stage of the software development
(Before coding).

ACKNOWLEDGEMENT

 First and foremost, we would like to thank our guide,

Prof.Avhad P.S. for his guidance and support. We will forever

remain grateful for the constant support and guidance

extended by guide, in making this report. Through our many

discussions, he helped us to form and solidify ideas. The

invaluable discussions we had with him, the penetrating

questions he has put to us and the constant motivation, has

all led to the development of this project.

We would like to convey our sincere and heart rendering

thanks to Principal Prof. Mahadik S.N. for his co-operation,

valuable guidance.

Also we wish to express our sincere thanks to the Head of

department, Prof. Tarte V.G. and the departmental staff

members Prof.Taware C.C., Prof.Gunaware N.G., Prof.Hirave

K.S., and Prof. Hiranawale S.B. for their support.

Shubhangi Jagtap1,
 Vishwas Gawade2,

Rahul Pawar3,
 Savita Shendge4

REFERENCES

[1]. C. Nebut, F. Fleurey and Y.L. Traon, Automatic Test
Generation: A Use Case
 Driven Approach, IEEE TRANSACTION ON SOFTWARE
ENGINEERING Vol.32,
 No.3

[2]. KIM, Y.G., HONG, H.S., CHO, S.M., BAE, D.H., AND CHA, S.D.
1999. Test
 Cases generation from UML state diagrams. In IEEE
Software 146(4): 187-192,
 1999.

[3]. BOOCH, G., RUMBAUGH, J., AND JACOBSON, I. 1998. The
Unified Modeling
 Language User Guide. Object Technology Series. Addison
Wesley Longman, Inc.

[4] A. C. D. Neto, R. Subramanyan, M. Vieira and G. H.
Travassos, “A survey on model-based testing approaches: a
systematic review”, In Proceedings of the 1st ACM
international workshop on Empirical assessment of software
engineering languages and technologies: held in conjunction
with the 22nd IEEE/ACM International Conference on
Automated Software Engineering (ASE), ACM, (2007), pp.
31-36.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 10 | Oct -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 879

[5] W. Zheng and G. Bundell, “Model-based software
component testing: A UML-based approach”, In Computer
and Information Science, 2007. ICIS 2007. 6th IEEE/ACIS
International Conference on IEEE, pp. 891-899.

[6] P. Kaur and R. Kaur, “Approaches for Generating Test
Cases Automatically to Test the Software”, International
Journal of Engineering and Advanced Technology (IJEAT)
ISSN: 2249–8958, vol. 2, Issue 3, (2013) February.

[7] T. Hussain and G. Frey, “UML-based development process
for IEC 61499 with automatic test-case generation”, In
Emerging Technologies and Factory Automation, ETFA'06.
IEEE Conference on IEEE, (2006), pp. 1277-1284.

[8] D. Xu and X. He, “Generation of test requirements from
aspectual use cases”, In Proceedings of the 3rd workshop on
testing aspect-oriented programs, ACM, (2007), pp. 17-22.
International Journal of Software Engineering and Its
Applications Vol. 9, No. 8 (2015) 104 Copyright ⓒ 2015

SERSC

[9] C. Nebut, F. Fleurey, Y. Le Traon and J. M. Jezequel,
“Automatic test generation: A use case driven approach”,
Software Engineering, IEEE Transactions on, vol. 32, no. 3,
(2006), pp. 140-155.

[10] S. Ogata and S. Matsuura, “A method of automatic
integration test case generation from UML-based scenario”,
WSEAS Trans Inf Sci., Appl., vol. 7, no. 4, (2010), pp. 598-
607.

[11] V. Santiago, A. S. M do Amaral, N. L. Vijaykumar, M. F.
Mattiello-Francisco, E. Martins and O. C Lopes, “A practical
approach for automated test case generation using
statecharts”, In Computer Software and Applications
Conference, COMPSAC'06, 30th Annual International, IEEE,
vol. 2, (2006), pp. 183-188.

[12] S. R. Dalal, A. Jain, N. Karunanithi, J. M. Leaton, C. M. Lott,
G. C. Patton and B. M. Horowitz, “Model-based testing in
practice”, In Proceedings of the 21st international
conference on Software engineering, ACM, (1999), pp. 285-
294.

[13] A. Kaur and V. Vig, “Systematic Review of Automatic
Test Case Generation by UML Diagrams”, International
Journal of Engineering, vol. 1, no. 6, (2012).

[14] J. J. Gutiérrez, M. J. Escalona, M. Mejías and J. Torres,
“Generation of test cases from functional requirements: A
survey”, In 4th Workshop on System Testing and Validation,
(2006) Potsdam. Germany.

[15] P. V. R Murthy, P. C. Anitha, M. Mahesh and R.
Subramanyan, “Test ready UML statechart models”, In
Proceedings of the international workshop on Scenarios and
state machines: models, algorithms, and tools, (2006), pp.
75-82.

[16] D. Sokenou, “Generating Test Sequences from UML
Sequence Diagrams and State Diagrams”, In GI Jahrestagung,
no. 2, (2006), pp. 236-240.

[17] S. Bangalore, O. Rambow and S. Whittaker, “Evaluation
metrics for generation”, In Proceedings of the first
international conference on Natural language generation,
Association for Computational Linguistics, vol. 14, (2000),
pp. 1-8.

[18] P. Samuel, R. Mall and P. Kanth, “Automatic test case
generation from UML communication diagrams”,
Information and software technology, vol. 49, no. 2, (2007),
pp. 158-171.

[19] R. K. Swain, V. Panthi and P. K. Behera, “Test case design
using slicing of UML interaction diagram”, Procedia
Technology, vol. 6, (2012), pp. 136-144.

[20] L. Li, X. Li, T. He and J. Xiong, “Extenics-based Test Case
Generation for UML Activity Diagram”, Procedia Computer
Science, vol. 17, (2013), pp. 1186-1193.

[21] P. E. Patel and N. N. Patil, “N. N. Test cases Formation
Using UML Activity Diagram”, In Communication Systems
and Network Technologies (CSNT), International
Conference, IEEE, (2013), pp. 884-889.

[22] R. Hametner, B. Kormann, B. Vogel-Heuser, D. Winkler
and A. Zoitl, “Test case generation approach for industrial
automation systems”, In Automation, Robotics and
Applications (ICARA), 5th International Conference, (2011),
pp. 57-62.

[23] H. H. Inbarani, P. K. N. Banu and A. T. Azar, “Feature
selection using swarm-based relative reduct technique for
fetal heart rate”, Neural Computing and Applications, pp. 1-
14.

[24] M. Sarma and R. Mall, “Automatic generation of test
specifications for coverage of system state transitions”,
Information and Software Technology, vol. 51, no. 2, (2009),
pp. 418-432.

[25] L. Briand and Y. Labiche, “A UML-based approach to
system testing”, Software and Systems Modeling, vol. 1, no. 1,
(2002), pp. 10-42.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 10 | Oct -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 880

[26] A. Abdurazik and J. Offutt, “Using UML collaboration
diagrams for static checking and test generation”, In UML
2000-The Unified Modeling Language, Springer Berlin
Heidelberg, (2001) pp. 383-395
.
[27] F. Zeng, Z. Chen, Q. Cao and L. Mao, “Research on
Method of Object-Oriented Test Cases Generation Based on
UML and LTS”, In Information Science and Engineering
(ICISE), 1st International Conference, IEEE, (2009), pp.
5055-5058.

[28] A. García-Domínguez, I. Medina-Bulo and M. Marcos-
Bárcena, “An Approach for Model-Driven Design and
Generation of Performance Test Cases with UML and
MARTE”, In Software and Data Technologies, Springer Berlin
Heidelberg, (2013), pp. 136-150.

[29] M. Prasanna and K. R. Chandran, “Automated Test Case
Generation for Object Oriented Systems Using UML Object
Diagrams”, In High Performance Architecture and Grid
Computing, Springer Berlin Heidelberg, (2011), pp. 417-423.
[30] V. Sawant and K. Shah, “Construction of Test Cases from
UML Models”, In Technology Systems and Management,
Springer Berlin Heidelberg, (2011), pp. 61-68.

[31] A. Nayak and D. Samanta, “Synthesis of test scenarios
using UML activity diagrams”, Software & Systems Modeling,
vol. 10, no. 1, (2011), pp. 63-89.

[32] S. Asthana, S. Tripathi and S. K. Singh, “A Novel
Approach to Generate Test Cases Using Class and Sequence
Diagrams”, In Contemporary Computing, Springer Berlin
Heidelberg, (2010), pp. 155-167.

[33] O. Oluwagbemi and H. Asmuni, “An Improved Model-
Based Technique for Generating Test Scenarios from UML
Class Diagrams”, Handbook of Research on Emerging
Advancements and Technologies in Software Engineering,
(2014), pp. 434-448.

[34] O. Pilskalns, A. Andrews, A., Knight, S. Ghosh and R.
France, “Testing UML designs”, Information and Software
Technology, vol. 49, no. 8, (2007), pp. 892-912.
[35] B. P. Lamancha, M. Polo, D. Caivano, M. Piattini and G.
Visaggio, “Automated generation of test oracles using a
model-driven approach”, Information and Software
Technology, vol. 55, no. 2, (2013), pp. 301-319.

[36] R. K. Swain, V. Panthi, D. P. Mohapatra and P. K. Behera,
“Prioritizing test scenarios from UML communication and
activity diagrams”, Innovations in Systems and Software
Engineering, (2013), pp. 1-16.

[37] S. K. Swain and D. P. Mohapatra, “Test case generation
from Behavioral UML Models”, International Journal of
Computer Applications, vol. 6, no. 8, (2010), pp. 5-11.

[38] S. K. Swain, D. P. Mohapatra and R. Mall, “Test Case
Generation Based on State and Activity Models”, Journal of
Object Technology, vol. 9, no. 5, (2010), pp. 1-27.

[39] E. J. Rapos and J. Dingel, “Incremental Test Case
Generation for UML-RT Models Using Symbolic Execution”,
In Software Testing, Verification and Validation (ICST), Fifth
International Conference, IEEE, (2012), pp. 962-963.

[40] X. Fan, J. Shu, L. Liu and Q. J. Liang, “Test case generation
from UML sub activity and activity diagram”, In Electronic
Commerce and Security, ISECS'09 Second International
Symposium, IEEE, vol. 2, (2009), pp. 244-248.

[41] M. Prasanna and K. R. Chandran, “Automatic Test Case
Generation for UML Object diagrams using Genetic
Algorithm”, Int. J. Advance. Soft Comput. Appl., vol. 1, no. 1,
(2009), pp. 19-32.

[42] P. Samuel, R. Mall and P. Kanth, “Automatic test case
generation from UML communication diagrams”,
Information and software technology, vol. 49, no. 2, (2007),
pp.158-171.

[43] A. K. Jena, S. K. Swain and D. P. Mohapatra, “A novel
approach for test case generation from UML activity
diagram”, In Issues and Challenges in Intelligent Computing
Techniques (ICICT), International Conference, IEEE, (2014),
pp. 621-629.

[44] M. Khandai, A. A. Acharya and D. P. Mohapatra, “A novel
approach of test case generation for concurrent systems
using UML Sequence Diagram”, In Electronics Computer
Technology (ICECT), 3rd International Conference, IEEE, vol.
1, (2011), pp. 157-161.

[45] P. N. Boghdady, N. L. Badr, M. Hashem and M. F. Tolba,
“A Proposed Test Case Generation Technique Based on
Activity Diagrams”, International Journal of Engineering &
Technology IJET-IJENS, vol. 11, no. 03, (2011).

[46] S. S. Priya and P. S. K. Malarchelvi, “Test Path Generation
Using UML Sequence Diagram”, International Journal, vol. 3,
no. 4, (2013).

[47] D. Kundu, D. Samanta and R. Mall, “Automatic code
generation from unified modelling language sequence
diagrams”, Software, IET, vol. 7, no. 1, (2013), 12-28.

 International Research Journal of Engineering and Technology (IRJET) e-ISSN: 2395 -0056

 Volume: 03 Issue: 10 | Oct -2016 www.irjet.net p-ISSN: 2395-0072

© 2016, IRJET | Impact Factor value: 4.45 | ISO 9001:2008 Certified Journal | Page 881

[48] W. Linzhang, Y. Jiesong, Y. Xiaofeng, H. Jun, L. Xuandong
and Z. Guoliang, “Generating test cases from UML activity
diagram based on gray-box method”, In Software
Engineering Conference, 11th Asia-Pacific, (2004), pp. 284-
291.

BIOGRAPHIES

Jagtap Shubhangi N.
pursuing the Bachlor Degree in Computer
Science Engineering from H.S.B.P.V.T.COE,Kashti
under
SPPU.

shubhangijagtap1992@gmail.com

Gawade Vishwas S.
pursuing the Bachlor Degree in Computer
Science Engineering from H.S.B.P.V.T.COE,Kashti
under
SPPU.
vishwasgawade96@gmail.com

 Pawar Rahul R.
pursuing the Bachlor Degree in Computer
Science Engineering from H.S.B.P.V.T.COE,Kashti
under
SPPU.

pawarrahul00010@gmail.com

 Shendge Savita G.
pursuing the Bachlor Degree in Computer
Science Engineering from H.S.B.P.V.T.COE,Kashti
under
SPPU.
 shendgesavita801@gmail.com

Prof. Avhad Pravin S.
he has done his M. Tech(CSE) from S.V.P.M.
college of engineering, JNTU, Hydrabad.

pravin123.avhad@gmail.com

o

mailto:shubhangijagtap1992@gmail.com
mailto:vishwasgawade96@gmail.com
mailto:pawarrahul00010@gmail.com
mailto:%20shendgesavita801@gmail.com

