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Abstract - Numerical analysis using Galerkin 

technique is carried out for finding the effect of axis of 

rotation and limiting condition of temperature 

gradient being oblique to gravity on the stability of 

fluids saturating porous medium.  Various cases of 

fluids having large and small Prandtl number have 

been studied which tend to destabilize the system by 

stationary and oscillatory modes.. Brinkman and Darcy 

models are used for large and small permeabilities 

respectively.  Numerical calculations are made to 

indicate the effect of inclination of axis of rotation on 

setting up of thermo convective instability.   
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1.  INTRODUCTION: 

Thermoconvective instability in the case of rotating fluids 
is applicable in geo-thermal analysis, where the effect of 
rotation is justified as the earth rotates with constant 
angular velocity about the vertical axis.  It is also of great 
importance to hydrologists and soil scientists.  

 Generally, many researchers have taken gravity 
and rotation axis along the vertical direction.  But in the 
actual study of geo-physical system, the axis of rotation is 
inclined to the direction of gravity at an angle of 23.5o .  
Hence the effect of obliqueness has to be considered in the 
stability analysis.  Knowledge of temperature gradient 
constituting thermal convection in mineral fluids is very 
much essential for the extraction of energy from geo-
thermal systems.  More over, even petroleum fluids in the 

form of crude oil are also embedded under shale rock-
beds.  Hence, for the extraction of crude from mine bed, 
the estimation of temperature gradient for onset of 
convective currents is a must.  The mechanism of 
convection cannot be completely understood if the 
inclination of axis of rotation to the direction of gravity is 
not considered. Lapwood (1948) and Wooding(1960) 
have determined critical Rayleigh number necessary to set 
up convection current in fluids embedded in a porous 
medium. 

 The linear stability of convective flow in a porous 
medium, which is induced by an inclined temperature 
gradient in a shallow horizontal layer was first studied by 
Weber(1974) and then by Nield(1991).  Nield et.al.(1993) 
and Manole et.al(1994) have investigated the linear 
stability problems for convection in a porous medium 
induced by inclined thermal and solutal gradients 
with/without horizontal mass flow rate.  Nield (1994) 
used higher order Galerkin approximation and found that 
beyond a certain value the effect of horizontal Rayleigh 
number is changed form stabilizing to destabilizing.  
Kaloni and Zongchun Qiao (1997, 2001) discussed the 
non-linear stability of convection in a horizontal porous 
layer subjected to an inclined temperature gradient by 
using the energy method.  The compound matrix method 
is used to solve the associated Eigen value problem.  Later 
they also considered a variable gravity field.  They had 
found that the preferred mode and that a decrease in 
gravity variation has a stabilizing effect on the system. 

 Chandrasekhar (1961) has determined the critical 
Rayleigh number for setting up of convection currents in a 
non-porous rotating system using normal mode 
techniques.  Rudraiah and Prabhamani (1973) extended 
the normal mode analysis of Chandrasekhar (1961) to 
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porous medium taking the axis of rotation along the 
gravity axis. 

 Several models had been analysed for rapidly 
rotating spherical systems with internal heat sources. 
Roberts (1968) and Busse (1970) analysed the onset of 
convection in rapidly rotating fluid spheres using linear 
stability analysis.  They considered Boussinesq fluids with 
uniform distribution of heat sources such that unstable 
radial temperature gradients were established.  
Heard(1972) studied similar results.  Hathaway et.al 
(1979) carried out a linear stability analysis of fluid layers 
under uniform rotation, which possesses both vertical and 
horizontal temperature gradients.  Sun and Schubert 
(1995) carried out numerical stimulations of thermal 
convection in rapidly rotating spherical fluid shell at high 
Taylor number and Rayleigh number with a non-linear 
three-dimensional time dependant spectral-transform 
code.  Zhang and Gubbins(1996) examined thermal 
convection in a rotating spherical shell with central gravity 
and a spatially non-uniformly heated outer surface at two 
values of Prandtl number  by numerical calculation.  Shin-
ichi Takehiro et.al.(2002)studied linear stability of 
thermal convection in rotating systems with fixed heat flux 
boundaries.  I.K.Choi et.al(2006) analysed  Endwall heat 
transfer and fluid flow around an inclined short cylinder.  
Barletta (2007) analysed Parallel and non-Parallel laminar 
mixed convection flow in an inclined tube.  Cha’o-kuang 
Chen and Ming-Che Lin (2009) analysed Weakly nonlinear 
hydrodynamic stability of the thin Newtonian fluid flowing 
on a rotating circular disk.   

 In the  present work, Thermal convection of a 
fluid with inclined axis of rotation analysed using Galerkin 
technique.   

2.  MATHEMATICAL FORMULATION 

An  infinitely spread quiescent layer of incompressible 
Boussinesq fluid  saturating a porous medium is confined 
between two stress free thermally conducting boundaries 

at 
2

1
z   and  

2

1
z .  The axis of rotation is inclined to 

the direction of gravity at an angle  .  Gravity defined the 

vertical direction and the rotation vector is tilted at an 

angle  090  from the vertical.  The angular velocity 

vector   has components  0,sin,cos   . 

Using the Brinkman Model, the governing equations are : 

Continuity Equation: 
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Energy equation: 
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where '  is non linear viscous dissipation function. 

Equation of the state: 

)](1[ 00 TT       (4) 

where 0  is the density at temperature  0T , 

),0,0( gg  is the acceleration due to gravity, q  is the 

velocity, t is the time, T is the temperature, p is the 

pressure, 



   is the kinematic viscosity, 

C

K

0
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
   is the 

thermometric conductivity,   is the angular velocity and 

0k  is the permeability parameter. 

Basic state is assumed to be a uniformly moving state, 

where  )0,0),(( zUq and the variation in x, y, t are 

assumed to be zero. 
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Linear theory is used for analyzing the stability of the 
system.  Using normal mode technique, the dynamic 
variables are written in the form: 

] exp[)(),,,( tilyikxzftzyxf   

where 
222 alk   is square of the wave number and 

 is the complex growth rate. 
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The real part of   represents the growth rate of 

disturbance and the imaginary part of   describes the 

propagation features of the mode.  W(z) is the amplitude 
function of the vertical velocity and Z(z) is the amplitude 
function for vertical vorticity. The z component of vorticity 
vector is written as  
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A small perturbation is superimposed on the basic state.  
The perturbed state quantities are: 

 ;,, wvuU q   )'(  ppc  and  TTc  

Assuming the velocity perturbation to be small, the 
governing equations become: 
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where 
z

D



   and 

z

T




   is the adverse 

temperature gradient. 

The final equations  obtained from equation  (5) to 

equation ( 7 ) for W, Z and   are: 
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where  suffices x, y, z of dynamical variables represent 
partial differentiation with respect to x, y, z respectively. 

The dynamical variables are non-dimensionalised as 
follows : 
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For applying linear theory in the limiting condition of 
variation of temperature along the y direction, the thermal 

gradient along the Y direction, 
yT is taken to be zero. 

This leads to reduction of the basic state velocity along x 
direction to zero. 

The non –dimensional form of the governing equations 
are: 
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The non- dimensional parameters used are: 
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3. NUMERICAL SOLUTION USING GALERKIN 

METHOD 

The boundary conditions are Finlayson(1970) 
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Using Galerkin technique the power series expansion for 
the variables are taken as 
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for the existence of non- trivial solutions for the above 
equations the determinant of the coefficients of A,B and C  
in (18), (19), and(20) is equated to Zero.  Stationary 
stability is analyzed, using the expression                 

 

       
742

653751

xxx

xxxxxx
Ra


  

where  

 )01230158.0(1214286.0
1 2

0

1 a
k

x   

)025992063.0(2 ax   

)1214286.0(sin)( 2

1

3 aTx   

)025992063.0(4 ax   

)569047619.0()05515873.0(2

5  ax  

)2.1(sin)( 2

1

6 aTx   

0

7

2.1

k
x 

 

4.  RESULT AND DISCUSSION 

 An infinitely spread fluid layer heated from below 
saturating a porous medium is studied.  The porosity of 
the porous medium is varied over wide range from 0.0001 
to 0.1.  The axis of rotation is assumed to be  inclined at an 

angle of 
0

2

1
23

with respect  to gravity axis, experimental 

and theoretical curiosity led to study the effect of various 
inclinations ranging from 15o to 90o

  and rotations 
prescribed by Taylor number varying form 10 to 108 .  It is 
found that the system cannot destabilize through 
oscillatory mode for a fluid having larger Prandtl number 

greater than 1 , because 
2  tends to be negative.  An 

interesting phenomenon of interaction of rotation, 
permeability and inclination is seen.  For small rotation ( 

410aT ), the destabilizing effect due to increase in 

permeability against increase in inclination is observed.  

However, for large rotation )1010( 64  aa butTT  from 

Table 1 and Table 2, the destabilizing effect due to 
increase in permeability is compensated by increase in 
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inclination.  From Figure 1 and 2 , the marginal instability 
in the fluid for Darcy and Brinkman models are observed 

for 
610aT .  Similar to Hathaway et.al (1979), for any 

permeability, the increase in rotation exhibits increase in 
Rayleigh number as well as the wave number thereby 
showing stabilizing nature of the system. 

5.  CONCLUSION 

 For small rotation, even though rotation tends to 
stabilize, the increase in permeability will favour the 
convection to a greater extent.  Inclination also has its own 
effect of stabilization.  When the rotation is increased, 
stabilizing effect due to rotation and inclination is more 
which tends to reduce the easiness for the flow and nullify 
the destabilizing effect.  For still larger rotation, the 
stabilizing effect of rotation is so large that for none of the 
inclination, the destabilizing effect is not observed.  

Table -1: Stationary instability for variation of  

Permeability parameter 0k  for different angles of 

inclination   with ,25.3ca 610aT (Darcy Model). 

 K0 Ra Nc 

0 

0.001 

40567.64844 40567648.43800 

15 41872.60156 41872601.56200 

30 45439.87891 45439878.90600 

45 50319.33594 50319335.93800 

60 55211.30469 55211304.68800 

75 58812.80469 58812804.68800 

90 60164.5625 60164562.50000 

0 

0.0001 

405676.5 405676500.00000 

15 405807 405807000.00000 

30 406163.7188 406163718.75000 

45 406651.6563 406651656.25000 

60 407140.875 407140875.00000 

75 407501.0313 407501031.25000 

90 407636.1875 407636187.50000 

 

 

Table -2: Stationary instability for variation of  

Permeability parameter 0k for different angles of 

inclination   with ,25.3ca 610aT (Brinkman 

Model). 

    

    

 K0 Ra Nc 

0 

0.01 

4056.765137 4056765.137 

15 17106.29102 17106291.02 

30 52779.08594 52779085.94 

45 101573.625 101573625 

60 150493.3281 150493328.1 

75 186508.3125 186508312.5 

90 200025.9063 200025906.3 

0 

0.02 

2028.382568 2028382.568 

15 28127.43359 28127433.59 

30 99473.02344 99473023.44 

45 197062.0938 197062093.8 

60 294901.5 294901500 

75 366931.5 366931500 

90 393966.6875 393966687.5 

0 

0.03 

1352.255005 1352255.005 

15 40500.83203 40500832.03 

30 147519.2188 147519218.8 

45 293902.8125 293902812.5 

60 440661.9375 440661937.5 

75 548706.9375 548706937.5 

90 589259.6875 589259687.5 

0 

0.04 

1014.191284 1014191.284 

15 53212.29297 53212292.97 

30 195903.4688 195903468.8 
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45 391081.625 391081625 

60 586760.4375 586760437.5 

75 730820.375 730820375 

90 784890.75 784890750 

 

Fig 1:Marginal Instability in Fluids for 

Darcy model w ith Taylor Number Ta = 106
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Fig 2:Marginal Instability in f luids for 

Brinkman Model w ith Ta = 106
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Nomenclature 

 

a  - dimensionless wave number 

d - thickness of the fluid  

g - gravitational acceleration 

k  -  dimensional wave number 

1k  - thermal conductivity  

0k  - permeability of the porous  

                 medium 

yx kk ,  - wave number in the x and y     

                 directions 

N - magnetic Rayleigh number 

p - hydrodynamic pressure  

Pr - Prandtl number 

q - velocity of the fluid (u,v,w) 

R - Rayleigh number 

t - time 

T - temperature 

aT  - average temperature of the lower  

                 and upper surfaces 

0T  - constant temperature at the lower  

                 surface of the layer 

1T  - constant temperature at the upper  

                 surface of the layer 

  - vector differential operator 

  - coefficient of volume expansion 

  - adverse basic temperature  

                   gradient 

  - density of the fluid 



          International Research Journal of Engineering and Technology (IRJET)               e-ISSN: 2395-0056 

               Volume: 03 Issue: 01 | Jan-2016            www.irjet.net                                                      p-ISSN: 2395-0072 

 

© 2016, IRJET                                                          ISO 9001:2008 Certified Journal                                                            Page 472 
 
 

0  - reference density at aTT   

  - kinematic viscosity, 

0

1




 

  - magnetic scalar potential 

  - angular velocity vector 

  - complex growth rate 

  - perturbed temperature 

  - vorticity vector 
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