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Abstract: In this article, we will generalize the Laplace
substitution method ie we will give the description of
Laplace substitution method for nth order linear and
nonlinear partial diﬂ”erential equations involving mixed

a"u ™ h
a3y ' 3mavm-1’ 3vPa _q(w ere
¥TCey  dxay yPay

p and q are positive integers such that p + q = n). This
method we will demonstrated by four examples. The results
obtained by the proposed method (LSM) tell us the method
can be used for solution of the linear and nonlinear higher-
order initial value problems involving mixed partial
derivatives.

derivatives of three types

il
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1. INTRODUCTION

It is well known that there are several methods
that can be used to find general solutions to linear PDEs.
On the contrary, for non-linear PDEs it is well known that
there are no generally applicable methods to solve such
nonlinear equations. A glance at the literature shows that
there are some known methods which have been applied
to solve special cases of nonlinear PDEs. For example the
split-step method is a computational method that has been
used to solve specific equations like nonlinear Schrédinger
equation [5, 6]. Nevertheless, some techniques can be used
to solve several types of nonlinear equations such as the
homotopy principle which is the most powerful method to
solve underdetermined equations [7]. In some cases, a PDE
can be solved via perturbation analysis in which the
solution is considered to be a correction to an equation
with a known solution [8, 25]. Alternatively, there are
numerical techniques that solve nonlinear PDEs such as
the finite difference method [10, 11, and 12] and the finite
element methods [13, 14 and 15]. We know that in
[1112][3][4], we have given the LSM for second order linear
and nonlinear partial differential equations involving
mixed partial derivatives.

In this article we will give the LSM for nt order
linear and nonlinear partial differential equations
involving mixed partial derivatives. The description of
same method we will give in the next section (2), in this
section we will give the three subsection, these three

subsections are separated on the basis of types of mixed
2% 2™ 2%u

il

derivatives, namely (where p

BxP1ay ' gxaynmi ’ ayP Ayt
and q are positive integers such that p + q = n). After the
description of (LSM), in section (3) we will solve this
proposed method to four coupled partial differential
equations involving mixed partial derivatives. In last
section (4), we will give the conclusion of this article.

2. DESCRIPTION OF METHOD

In this section, we will give the only description of
LSM for n* nonlinear partial differential equations
involving mixed partial derivatives. If the equation is linear
that means in the given equation does not contain
nonlinear terms, and then we will use the same description
for that linear equation, from that description we will
remove only the part of use of Adomian polynomials. In
the same section we will give the tree subsections, these
are separated on the basis of types of mixed derivatives
contained in the equation.

2.1 LSM for nth non linear partial differential
equations involving mixed paﬂrtial derivatives
. . . . d"u
with mixed derivative of type niay
Consider the following nt" nonlinear partial
differential equation,

Lulxy) + NuGx.y) + Ru(x y) = h(xy) (2.1)

With initial conditions,
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ulx, 0) = glx),u,(0,y) = f(y), u, (0.y) = £, (y),
2 (0,5) = £,(y), u,3,(0,3) = H(y) oo,
un-2,(0,y) = £5_,(y) (2.2)

Where L = Nu(x, y) is a nonlinear term,

an
dxm—igy’
Ru(x, y) is a remaining linear term and h(x, y) is a source
term. Equation (2.1), we can write in the following form

] + Nulx.y) + Bulx.y) = hixy)

A0-1 san

ﬂ n—1 (ﬂ
o fu , .

Let we use the substitution, U = a_y in above equation we

get

an
ani

-I— Nulx,y) + Rulx y) = h(x.¥) (2.3)

Taking Laplace transform of above equation with respect
to x, we get

1 1 1
uis, v) —EU(U,y] = U, 0,y) -5 Ua(0.5).... -
—— U200, 5) = — Li[h(x,y) - ‘\]u{x,y] — Ru(x, )]
From the initial conditions (2.2) and the value of U = :—:,
we get
1 1 1
us, y) —Ef,_,{y] —;Fl{y] -0 . sy 2(y)

1
= ooz Lulhlx y) — Nub,y) — Ru(x.y)]

Taking inverse Laplace transform of above equation with
respect to X, we get

Ulx, y) = £ () + =f, () + o F: y) + .

xl:l 2 n—2
+{ﬂ_3] - u(y]+ T f,_,0)
+L;l — Nulx,y) — Ru{x,y]]]

Re-substitute the value of U= ay = in above equation, we

get

I:I

Fnﬂv]+ +{ T f_2(y)

= fply) +=f, (y) + T

n—2

X
+qu-:(:~’3
4154 | Le [hix y) — Nulx,y) — Ru{x,y]]]
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Taking the Laplace transform of above equation with
respect to y, we get

sulx,s) —ulx,0) = L, f, (y) + =f, () + F Qv] + o

+L,
Again from the initial conditions (2.2), we get

ulx, s) = E+ Ly fo(y) + xf, () +

Lt [ﬁLx[h{x*yj — Nulx, vyl — Ru{x,y:]]”

?.F:{v]-l- ......... +

{; f_s (y]] +-Ly L

Taking inverse Laplace transform of above equation with
respect to y, we get

ulxy) = gl + 15* [ L, [f,_,{yj + xf, () +=

71 2

- fa-z <.v:|]] v [ L [in [ ilbey) - NuGey) -
Ru(x. Y]]]”
(2.4)
Suppose that,
ulx.y) = Enop un (2 y) (2.5)

is a required solution of equation (2.1). The nonlinear
term Nu(x, y) is appeared in equation (5.3.1). We can
decompose it by using Adomian polynomial which is
defined in [1, 2]

Nulx, y) = Ep_p 4y (2.6)

Where Ap is Adomian polynomial of
components g G, y). 1, Gt y), v uy (i y)n = 0 of series

(2.5). Substitute equations (2.5) and (2.6) in equation
(2 4), we get

Zuu(m gl +15° [

n=0

n-1

£y (y) +xf,(y) + F (\v + ﬁ

hx, y) —i.qu —R(
n=>0

Mii

1 1
40T L ke

Comparing both sides of above equation, we get
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un(x,y]=g(x]+L§lELy FDQJ]Jr)cFL(v]%F:QrH ...... (n_ a0t Q:]H.y - [—L“IL lhﬂ”
u G y) = —L5* ELF [LEl <[Ap + Rug (x. )] ]
3 . E
u, Gey) = -3 -L Lt [FL“ (4, + Ru, (x.v)] ]

1 1
up G y) = _L}i ;Ly [LEL Lu_l xlin_y + Ruu—i':x'.v:]]” mzl

From the above equations, we get the following recursive
relation

up (e y) = K(x. )

up,, (o y) = -7t SL? [L;l [ﬁL}:[AD + Ruu{x,y]]” nzl

(2.7)
Where

K(x,yJ:g(;dH.;LEL?

W) ) bt (ﬂx_;j: ON (ﬂx__;j:fu-zﬂvJ”

51"-’ L:_lL;l[Lx[h]]”

+L5*

From the recursive relation (2.7), we can find the
components uplx yhou, &yl u vl uGyln=0 of
series (2.5). Substitute all these values in equation (2.5),
we get the required solution of equation (2.1) in series
form.

If in the (2.1) equation initial conditions are in the
following form,

Ut (x, 0) = glx), ul0, y) = f,(y), u 00,57) =
fi () u2(0.y) = £, (y). u,ez0.y) =
fo{y), um-2(0,5) = f_,(3)

(2.8)

, . . g . .
then we can’t use the substitution U = a_: in equation

(2.1). Hence we can’t use the above explained method.
Therefore we need to explain the LSM when such a
situation appeared in given problems. By the Young’s
theorem, we know that the mixed derivative of nth order

n

ﬁ appeared in equation (2.1), we can write it in the

form of Therefore the n™ order nonlinear partial

3}?3 -1’
differential equation involving mixed derivatives (2.1)
with initial conditions (2.8) becomes,

2%u
dy axn—i

w1 (x, 0) = glx), u0,y) = ), v, (0.v)
= £ () w2 (0.y) = £y} uz00.v) = f,(y).
ux“':{[]*y:] = u—:':y:]

+ Nulx.y) + Rulx.y) =hlxy) (2.9)

Above equation (2.9) we can write in the following form

g fa" B
E_y(ﬂx“‘i) + NL‘I.':}{, Y:] + RLI':X_.}F:] = h{x,y:]

.o, art . .
Let we use the substitution P _1: = U in above equation,

then above equation becomes

‘:_3 + Nuflx, y) + Rulx. y) = h(x y)

Taking Laplace transform of above equation with respect
toy, we get

1
Ulx,s) = % +s L, [h(x, y) — Nulx,y) — Ru(x, y)]

Taking inverse Laplace transform of above equation with
respect to y, we get

Ulx,y) =gl + L§1 2 L,[h(x,y) — Nulx.y) - Ru{x,y]]

Re substitute the value of U(x, y) in above equation, we get

tulx, V]—g{x]

ﬂxﬂ 1

+L;1 E Ly[h{x,}?:l — Nulx, y) — Ru{x,y]]]

Taking Laplace transform of above equation with respect
to x, we get

I:I 1

uls,y) —s22ul0,y) — s 2u, (0, y)

—s" 4, (0.y) —

— -2 (0, )

1
=L, g + L5* [;]_Y[h{x,y] — Nulx.y) — Ru{x,yj]”
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From the initial conditions (2.8), we get

fly) fily) £y fo—2(y)
- —

su—i

uls, vyl — —
5° 5

MEEUE = E Ly[hGx, y) — Nulx,y) — Ru{x,y]]”

Taking inverse Laplace transform of above equation with

respect to x, we get J J
fo_s
ey) = ) +3,6) 436 D pomi 2T

+1;t

We know that in Laplace substitution method, we
represent solution in infinite series form. Therefore
suppose that,

ule,y) = Xp_p u, Goy) (2.10)

is a required solution of equation (2.9). As we have
explained above at equation (2.6), similarly the nonlinear
term Nu(x, y) we decompose it by using Adomian
polynomial same as equation (2.6).

Substitute equation (2.10) and (2.6) in equation (2.9), we
get

T2 uGy) = @)+, G) + By Ly

[g':x] +L* [ L, [hGy) —

A -
x0 ‘“‘_fI+L

2.0 8y — RIZZou, yJ]]]”
(2.11)
By comparing both sides of above equation, we get the
following recursive relation
up (e y) = k(. y)

L [L;i 21,14, + Ruyx yﬂ]”
(2.12)

g G y) = 17

Where

kix, v) = f,(y) + =f, (y) + x* + ..

1 '('G’]
a1

— L, gl +15° E L, [h(x, y) — Nulx,y) — Ru{x,y]]”

RN )]

01

+;1

I:I 1

|55 [ L[t v]]”

is a source term. From the recursive relation (2.12), we can
find the components of the series (2.10). If we substitute
the value of all these components in equation (2.10), we
get the required solution of equation (2.9) with initial
conditions (2.8).

22LSM for nt order nonlinear partial
differential equations involving mixed partial

de;_;ivatives with mixed derivative of type
u

ﬂxﬂyﬂ—l

Consider the following nt order nonlinear partial
differential equation,

Lulx y) + Nulx,y) + Rulx,y) = h(z y) (2.13)

In the above equation L = Nu(x, y) is a nonlinear

an
dxayn—i’
term, Ru(x, y) is a remaining linear term and h(x, y) is a
source term. We can find the solution of equation (2.13)
for the initial conditions,

1) upe-1(x,0) = gyl ulx, 0) = £, u, (0,y) = £, (y)

Jup(0,y) = £(y),u200,y) =0y, up-200,y) =
FD—:{?J

(2.14)

1l
u{)x, 0) = g, uy (x, 00 = £ (0, uyp G, 0) = £, (0,
2, (2,00 = £,020), u2, (x, 00 = £5,00),
ugn-2, (x, 0} = f_;(x)
(2.15)

If the initial conditions are of (I), then we will use the

=1
substitution U = in equation (2.13). If the initial

I;x},r.\u—i 4

conditions are of the form (II), then we will use the
2

substitution U = ;L:, in equation (2.13). As we have

explained LSM for nonlinear partial differential equations

involving mlxed partial derivatives with mixed derivative

of type

ay in subsection (2.1), similarly we can find
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solution of nonlinear partial differential equations
involving mlxed partial derivatives with mixed derivative

by LSM.

of type P

23LSM for nt% order nonlinear partial
differential equations involving mixed partial
derivatives with mixed derivative of type

_ where and are positive integers
axPay? p q p g

withp+q=n
Consider the following
differential equation,

LuGey) 4+ Nulx.y) + Rulx, y) = hix, y)

nth order on linear partial

(2.16)

With initial conditions,

s (0, y) = f3(y), e (0,y) = £,(y), u,z2,2 (0.y)
=3 A5 - up-2,a (0, y) = fy_5 (), uygp-2,a (0, )
fooa (yhulx, 0 = g (), u, (x,0) =
g ), u},:{x, Olg, G oo — Lya-t x0) = Eq_l{)ﬂ

(2.17)
Ru(x, y) is a remaining

. a
In equation (2.16),L = Parp

linear term, Nu(x, y) is a nonlinear term and h(x, y) is a
source term. Let we write the equation (2.16) in the
following form,

8%u
57 By + Nulx, y) + Rulx,y) = h{x )
g¥ rd%u
ﬁ(ﬂ EJ + Nulx,y) + Bulx. y) =h{x.y)

. 2% . .
Substitute ﬁ = U, in above equation we get

gru
ﬁ.|_ Nulx, y) + Rulx.¥) = h(x )

Taking Laplace transform of above equation with respect
to x, we get

p-1

pz
Uls,y) - —-Ul0.y) - —u (0.y) -

1 1
U,p-2(0,y) — S—Puxp-ui& y) = = L. [hGxy) —

T sP

By using the value of U = % in above equation, we get

Uls,y) — —uyq (0,y) — = uga (0. y) — Su,ea (0, y)
T T g Pty {U;Y] =
1

From the initial conditions (5.3.25) and above equation,
we get

1 1 1
UG.y) - 6 ——flgvj - 5hG) -
1
mif-a®) = o)

1
= S—PLx[h{x,F] - ‘\]u':x,}?] - RU.{K-F]]

Taking inverse Laplace transform of above equation with
respect to x, we get

Ulx y) =
xP?

(p-2) -2
S—PLx[h{ny:l — Nufx, yil - Ru{x,yj]]

fo(y) + xf, (y) + 21 E': ) +-

%P1
:]pll(\,V:]

+——f,_.(y) +

+1;t

3% .
Let we use the value of U = E in above equation, we get
p-1

= o) +38, () + o 5120 et o o )

ﬂr
+Iot L_pLx[h{x’y] — Nulx,y) - Ru{x,y:l]]

Taking the Laplace transform of above equation with
respect toy, we get

H{XS:]—_ED{X:I+ Eim"' E{x:] + 3 Ba- G

o
-2

L;t L—p L [h(x, y) — Nu(x, y) — Ru(x, yj]”

o1 f:'{x":] e

+ 2Ly [Fn{y:] +30,(y) + =

xp'l

+<p—13:F"‘1]+EL?

Taking inverse Laplace transform of above equation with
respect to y, we get

a1
ul, v:l—gD{x:] +vgl{x]+7,g G0 ... +{ —1 gq_lix:]
Nufx, y) — Ruip y)]

+L5* EL? £, (y) + xf, () +§F:(y] .t
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a0 42 ﬂ.pl]]ﬂy [Lgl[nglmix,yJ—

Nu(x,y) — Ru(x, yj]]”
(2.18)

We know that, in Laplace Substitution Method we
represent solution in infinite series form; therefore let we
suppose that

ulx, y) = Top up(%.¥) (2.19)
is a required solution of equation (2.16). Let we
decompose nonlinear term Nu(x, y) by using Adomian
polynomial A,.

Nu(xy) = X5 p Ap (2.20)

Substitute equation (2.19) and (2.20) in (2.18), we get

Zu {xv]—gn'iﬂ+vgl'ix]+ g{x] -+
=vq—: a-1
G i s ¥

Lyt [ qI_?[FDQv] + xf, (y) = o j\v] A+

'}: i p-2 {*"” - J]“"f [ [L’El [iLx[h{wJ—

a0 hn — ROPooun :«JJ]]”

Comparing both sides of above equation, we get the
following recursive relation

up (. ) = K(x. )
o) = 5 1 [ [ s+ e
(2.21)

Where

Kxy) = go0 + yg, &) +3;—:g:{x] ot

g—1i

i ¥
'ZI:J—::'!E'?‘:{K?J (g0 Ba- 160 +

Lyt [ﬁ Ly [f,_,{y] +xf, (y) + ; f.0y) ...+

5 L1
:] -F,_ (__V:]"‘ :] P 1.:”

xP*

-2t

+L5* g L, [L;l Llp L, [h{x,y]]”

From the recursive relation (2.21), we can find the
components
up (%, y)ouy Gyl u Gyl v v 1y yhn = 0 of the
series (2.19). Substitute all these values in equation
(2.19), we get the required solution of equation (2.16) with
initial conditions (2.17).

Let we solve the nonlinear equation (2.16) with
following initial conditions

up (2, 0) = gp(), upa(x, 0) = g, (0, ug2a(x 0)
= E:{x:]J . uyq-:xp{x, 0 = gq_:{x:],
-4 (5.0) = Bqus (0,400.) = £,
u, (0, y) = £, (y) u,2 (0,y) = £(y), .. w2 (0,y) = £,_, (y)
(2.22)

then by the Young’s theorem, equation (2.16) we can write
in the following form

2™y 3
s T Nulx, y) + Rulx,y) = h(x.y)
g% r8Pu

@(ﬂ pJ + Nulx,v) + Bulx. y) = h{z.7)

. #Fu . .
Let we use the substitute Pt U, in above equation we
get
240

mt Nu(x.y) + Rulx y) = hix. ¥)

Taking Laplace transforms and then inverse Laplace
transform of above equation with respect to y, we get

e
UG y) =gl +yg: 00 + 578,00 + -+
yi-t N

+{:I_1]:

Eq—lm
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1
-H.§1 - Ly[h{x,}f:l — Nulx, y) — Ru{x,y:l]]

2P .
Let we use the value U = o 0 above equation, we get

8P u z ya-t

——gn'f.x]+vg,_{)ﬂ+?,g{ﬂ +{ 1

3P 1 Eg- 1.':"5]
+15* [5 1 InGey) - Nubey) - Ruey)l]

Taking the Laplace transform and then inverse Laplace

transform of above equation with respect to x, we get

. <A1

?.F:(,V:l +{ —1)! fo_1
y1-2

—.E -

I B

ulx,y) = fy(y) + =, ) + {y)

1
+L‘[ [gn':x]+vgl':x:]+7,g{ﬂ -+

g-1
{qv t Ba- l{ﬂ”

L, |L5* qu L, [h(x,. y) — Ru(x y]]]”

(2.23)

M
+I;t s

Let we suppose that,
ulx. y) = oo un (X ¥) (2.24)

be a required solution of equation (2.16) with initial
conditions (2.22).

We have decomposed nonlinear term Nu(x, y) by equation
(2.20), similarly we can decompose it by using Adomian
polynomial A, same way. Substitute equation (2.24) and
(2.20) in (2.23), we get

Y ualey) = ) + 30,60 + 266
n=0o
x3-t
- D! 14
1 yi*
+L_ [ [ED{X:] -I-Vgi':xj + ?.E {X:] +I: ,;‘:].Eq_

L)+

() +

i

Iq l‘llgq 1'::?{]]] + L_j-

: [L? 21,06 y) - S0k -

RIEZ, uy (x ;m]]”
(2.25)

Comparing both sides of above equation, we get the
following recursive relation

up (2, y) = K(x.y)

1

b G y) = —13H 5L, [1;1 Liq;,[.an + Run{x,yj]]”
(2.26)
Where,
K{x,jﬂl foy) 426, ) + "F.Qv] %%-L@
+1;t [ [g,:.{x] +yg.6) +2 j,,g 2 +{qV ?],gq_:{x] +

ya-t

) oo
ﬁﬁq-iﬁﬂ” + L3t S—PLx [Lyi [ﬁ Ly[h{x,y]]”

From the recursive relation (2.26), we can
find  wpley)u Goy) wGoyh v e 1 yln = 0 .

Substitute all these values in equation (2.24), we get the
required solution of equation (2.16) with initial conditions
(2.22).

3. APPLICATION OF LSM FOR nt» ORDER PDE’S
INVOVLING MIXED PARTIAL DERIVATIVES

In this section we will solve the four partial differential
equations involving mixed partial derivatives with given
initial conditions.

Example 1: Let we consider the first following linear
partial differential equation of 5thorder

25 du du
dxdy* dx dy - [ )

With initial conditions

ulx, 0) = 0,u(0,y) = 0,u,(x,0) = xu. (x0) = EI}

Uy (5, 0) = 0,1, (0, ) = 0
(3.2)
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Equation (3.1) we can write in the following form aw® v 1
8 [#*u du fu u; 6. y) =?__I_ [ 41'9["10]]"'1"&‘ Lt ;Lx[uny]]
E(@)Jrﬂ_ﬂ_y'y_x
B f the gi initial diti 1 h s (1 "k -‘11
ecause of the g;YEn initial condition, let we use the U (x, y] =-L ; Ly[un_l] + L ;LF L, ;Lx[u,:u_l:,y]
substitution U = in above equation, we get -
ay*
(3.5)
g0 Ju Bu
5_+ﬂ__ﬂ_ =y —x From the above recursive relation, let we calculate
* X0y components of series solution (3.4)
Taking the Laplace transform of above equation with ug (x, y) = yx
respect to x, and then inverse Laplace transform of above
equation, we get ) )
oyt oyt
34y 2 ul(xv] : 9'4.' Lj Lj[unxv] L 4Ly L[uDjr xy)] -zt ;¥:
— =yx———ulxy) +L;* —]

gyt pl

Similarly,
_ - urGey) = 15 [S 1 s Ge ]|
Taking Laplace transform of above equation with respect =

y, then inverse Laplace transform of above equation, we

get +15°

ihf [L? ELK[HLF.:K,F] ]]” =0 .....s00n

Substitute all the values of us(x, y), n = 0, in equation (3.4),

uGey) =yxt L 1ot TuGey]]

2 4! we get
ol M el S M ue,y) = yx
w5 [y 3 o LF]” 33) ;
Suppose that This is an exact solution of equation (3.1) with initial
oP ’ conditions (3.2). We have verified this through the
ulx,y) = X2 up(xv) (3.4) substitution.

Example 2: Consider the following 3 order nonlinear

, . . . ) ) partial differential equation
is a required solution of equation of equation (3.1) with

initial conditions (3.2).We are not using Adomain FER aun?

polynomial here, because of absence of nonlinear term. axiay (a_y) =0 (3.6)
Substitute equation (3.4) in equation (3.3), we get with initial condition

& weoxyt

Y= G- o Zuu )+ \Zuwcx,yu} 509 = Luy 09 =LuGO =0 (7)
n=0

S g .
Let we use the substitution U = a_: above equation, we get

Let we use here Modified Laplace Substitution Method [2, atu
3, 4], comparing both sides of above equation, we get the E
following recursive relation,

—2U%8 =0

Taking Laplace transform of above equation with respect
up G, y) = yx to x, and then taking inverse Laplace transform of above
equation, we get
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UGky)=1+x+1;*

1

—L, [2u?

L ]]

Re-substitute the value of U = j—:, in above equation, we
get

fu 1 L (ﬂu]
dy * dy

—=1+x+ 13

Taking Laplace transform and then inverse Laplace
Transform of above equation with respect to y, we get

uGey) = y(1 +30 + 205 1L [L;l Li L, [G—;)]”

(3.8)
Suppose that,

ulx,y) = Epop un (2 y) (3.9)

is a required solution of equatlon (3.6). We know that a
nonlinear term Nulx,y) = ( y)- is appear in given

equation (3.6), let we decompose it by using Adomian
polynomial which is defined [2, 3, 4]

auy? w0
(5) =T, (3.10)
In above equation A,.1 = 0is an Adomian polynomial of
components
LID':XJYJ,LII{KJY]J u:{x.:y:].: ------------- JUD{XJF:L n = a of

series (3.9). We have found the some Adomian
polynomials Ay, by using the formula [2, 3, 4].

Ay = ug, Ay = 3ufp ug, Ay = 3ugeul, 4 3ug, ug,

sa s 53001

Substitute equations (3.9) and (3.10) in (3.8), we get

Z u, (xy) =y + 2 + 205° L_., L;t

n=0

(2

Let we use again MLSM here for finding exact solution of
equation (3.6) with less computation. Comparing both
sides of above equation, we get the following recursive
relation

uy G, y)

L, [L 1 Lx[ﬂn]]”
| -2

(3.11)

uy G y) = xy + 2051

p,1Gey) = 2150 [ i [t

From the above recursive relation, let we calculate the
components i, yln = 0.

u Gyl =y

nGey) =3y + 23| [LEL EL}‘[‘J"’]” =Ry

xi
upGey) = 2057 %L; [LELEL}{[HL]” = Y[K! +?]J

w & xE']

1 1 . .
s, y) = 2]_,}1 ;LY [L;l [;LXISuDyu;_? + 3ugy u:Y] i T-I-?-I-?,

n=0
o1 n . . . 1
Fh-px" is a geometric series converges to — .for lxl < 1,
o l-x
Therefore,

u{xv:]—— x| =<1
1-—x

This is an exact solution of equation (3.6) with initial
conditions (3.7). We have verified this through the
substitution.

Example 3: Consider the following 5% order nonlinear
partial differential equation

a5 fu 7
e U + u* = efcosy (3.12)
with initial conditions
ul0,y) = —cosy.u,(0,v) = —cosy, u,2(0,y) =

—cosy,u,z(x0) = —e, uz,(x,0) =0

(3.13)
Because of the initial conditions (3.6) we cannot use the

2

3; in above equation (3.12). In this

substitution U =
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I a2
problem we can use the substitution U = ﬁ . Therefore let

we write the equation (3.12) in following form

a* ﬂ!u) fu ex
Byt \ Bt _u5x+u - ey

. . 3, .
Let we use the substitution U = =0 above equation, we

get i
g<u fu

7y —ua+u: = efcosy

Taking Laplace transform and then inverse Laplace
transform of above equation with respect to y, we get

Ul y) +&* - L3* [ I..F[u——u]] = &*[1 — cosy]

. 2%
Re-substitute the value of U = =

-

Taking Laplace transform then inverse Laplace transform
of above equation with respect to x, we get

in above equation, we
get
% u
e ?

= —e*cosy + L7*

ulx, y) = —e*cosy + L3t S%Lx Lt L. ]”
(3.14)
Suppose that,

ulx,y) = T pup(xy) (3.15)

is a required solution of equation (3.6). We know that a

. du T . . .
nonlinear term Nulx,y} = us-—u'is appear in given

equation (3.6), let we decompose it by using Adomian
polynomial which is defined [2, 3, 4]

u— =Xa- and u® =X B, (3.16)

In above equation Apand By, n=0 are Adomian
polynomials of components

un{x; Y:].-U.j_{x.- Y:].: g {x.: Y:].: ------------- JUD{XJF:L n = a of

series (3.15). We have found the some Adomian
polynomials Apand By,

Ay = ugug, , By =up

Ay = upuytugug, o By = 2uguy
Ay = wpug gy, +ugug, . By = 2upuy +ug

Substitute equations (3.15) and (3.16) in (3.14), we get
Z up, (x, 7) = —efcosy

$uo3e]

n=0 n=0o

. 1 . 1
+L; ;Lx L ;Ly

Comparing both sides of above equation, we get the
following recursive relation

uy (%, v) = —efcosy

i [L_,,[ LA, , - “]”,n}n

(3.17)

up (x, 7)) = L3t

From the above recursive relation, let we calculate the
components uy . vln = 0.

uylx,v) = —efcosy

o]

& y)=0nz=1

u, (x,y) = Lt —L

Substitute all these values in equation (3.15), we get

ulx,y) = —e*cosy

This is an exact solution of equation (3.6) with initial
conditions (3.7). We have verified this through the
substitution.

4. CONCLUSION

The proposed Laplace substitution method has
been successfully applied directly to nth order linear and
nonlinear PDEs involving any type of mixed partial
derivatives without using linearization, perturbation, or
restrictive assumptions. Moreover from examples (1) and
(2), we can say that MLSM is easily applicable to same
problems. It provides the solution in terms of convergent
series with easily computable components and the results
have shown remarkable performance. The efficiency of
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this method has been demonstrated by solving one linear
and two nonlinear PDEs of any order.
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