
          International Research Journal of Engineering and Technology (IRJET)       e-ISSN: 2395-0056 

               Volume: 02 Issue: 09 | Dec 2015                    www.irjet.net                                                                    p-ISSN: 2395-0072 

 

© 2015, IRJET       |       Impact Factor value: 4.45       |       ISO 9001:2008 Certified Journal       |     Page 2664 
 

Enhanced Fuzzy Model Reference Learning Control for  

Shell and Tube Heat Exchanger process 

S.Ramesh1 

Assistant Professor, Dept. of Electronics and Instrumentation Engineering, Annamalai University,  
Annamalainagar, Tamilnadu.  

---------------------------------------------------------------------***---------------------------------------------------------------------
Abstract - Enhanced Fuzzy Model Reference Learning Control 
(EFMRLC) is an efficient technique for the control of non linear 
process. In this paper, a FMRLC is applied in to a non linear 
spherical tank system. First, the mathematical model of the 
spherical tank level system is derived and simulation runs are 
carried out by considering the EFMRLC in a closed loop. A 
similar test runs are also carried out with Neural Network 
based IMC PI and conventional ZN based PI-mode for 
comparison analysis. The results clearly indicate that the 
incorporation of EFMRLC in the control loop in spherical tank 
system provides a good tracking performance than the NNIMC 
and conventional PID mode.  
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1. INTRODUCTION 

Control of non linear process is main criteria in the 
process control industries. These kind of nonlinear process 
exhibit many not easy control problems due to their non-
linear dynamic behavior, uncertain and time varying 
parameters. Especially, control of a level in a spherical tank 
is vital, because the change in shape gives rise to the non-
linear characteristics. An evaluation of a controller using 
variable transformation proposed by Anathanatrajan [1] on 
hemi-spherical tank which shows a better response than PI 
controller. A simple PI controller design method has been 
proposed by Wang and Shao [2] that achieves high 
performance for a wide range of linear self-regulating 
processes.  Later in this research field, Fuzzy control is a 
practical alternative for a variety of challenging control 
applications, since it provides a convenient method for 
constructing nonlinear controllers via the use of heuristic 
information. Procyk and Mamdani [3] have discussed the 
advantage of Fuzzy Logic Controllers (FLC) is that it can be 
applied to plants that are difficult to get the mathematical 
model. Recently, Fuzzy logic and conventional control design 
methods have been combined to design a Proportional - 
Integral Fuzzy Logic Controller (PI - FLC). Tang and 
Mulholland [4] have discussed about the comparison of fuzzy 
logic with conventional controller. 

 Recent years, neural network (NN) had been 
adopted in nonlinear IMC design due to its good ability of 
approximate arbitrarily nonlinear vector functions [5][6]. 
For some complex processes, however, when the work 
condition of system varies, the process characteristic 
changes drastically and falls outside training region. Even 
though the NN model is available, it is difficult to design the 

NN inverse controller unless the model is open-loop 
stable[7]. When the process is unstable in local region, the 
controller based on a fixed model will be unreliable and thus 
the system performance is affected seriously. 

To trounce these problems, in this paper a 
“learning” control algorithm is presented which helps to 
resolve some of the issues of fuzzy controller design and NN 
inverse model. This algorithm employs a reference model (a 
model of how you would like the plant to behave) to provide 
closed-loop performance feedback for synthesizing and 
tuning a fuzzy controller’s knowledge-base. Consequently, 
this algorithm is referred to as a “Fuzzy Model Reference 
Learning Controller” (FMRLC) [8][9][10]. 

The paper is divided as follows: Section 2 presents a 
brief description of the mathematical model of Spherical 
tank system, section 3 and 4  shows the methodology, 
algorithms of EFMRLC and NNIMC , section 5 presents the 
results and discussion and finally the conclusions are 
presented in  section 6. 

2. MATHEMATICAL MODELING OF (STHE) 

Fig.ure.1 shows the two different heat exchanger 
sections namely shell and tube[11][12]. These sections are 
further divided into control volumes.  

 

 

Figure.1 Flow arrangements of Shell and Tube Heat 
Exchanger (STHE) 

The following assumptions were made while designing 
the mathematical model of shell and tube heat exchanger. 

1.  The control volumes are small and assumed to have a 
constant temperature. 

       2. The heat exchanger is insulated and there is no heat loss 
from the heat    exchanger to the surrounding.      
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Shell Control Volume (CV) Energy Balance 

The convection term in heat exchanger is divided into a 
number of sections called the control volume. The final 
equation for the energy balance on the shell control volume 
given in eqn. (1) is equal to the energy gained due to change 
in temperature plus energy gained by convection. 
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Tube Control Volume Energy Balance 

The energy balance on the tube control volume is 
analogous to the energy balance on the shell control volume. 
The energy balance equation is developed in the same 
manner as the equation developed for the shell control 
volume. The final differential equation for the rate of energy 
stored in the tube control volume is given by 
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The eqns. (1) and (2) are referred as mathematical 
model of shell and tube heat exchanger and they are solved 
to get hot water outlet temperature (Tho) by applying cold 

water inflow rate ). (Cm ins  Cin is the volumetric flow 

rate in LPS.  

3. ENHANCED FUZZY MODEL REFERENCE LEARNING 
CONTROL (FMRLC) 

This section discusses the design and development 
of the EFMRLC and it is applied to the spherical tank level 
system. The following steps are considered for the design of 
EFMRLC. 

I. Direct fuzzy control   
II. Adaptive fuzzy control 

3.1Direct Fuzzy Control 

The rule base, the inference engine, the fuzzification and 
the defuzzification interfaces are the  our major components 
to design the direct fuzzy controller [8]. 

      Consider the inputs to the fuzzy system: the error and 
change in error is given by 

e(kT)=r(kT) – y(kT)                                              (3) 

c(kT) = ( e(kT) - e(kT-T) ) / T                               (4) 

and the output variable is 

u(kT) =cold water inflow rate in LPS                  (5) 

 

The universe of discourse of the variables (that is, their 
domain) is normalized to cover a range of  [-1, 1] and a 
standard choice for the membership functions is used with 
five membership functions for the three fuzzy variables 
(meaning 25 = 52 rules in the rule base) and symmetric, 50% 
overlapping triangular shaped membership functions 
(Figure 1), meaning that only 4 (=22) rules at most can be 
active at any given time. 

-1 -0.5 0 0.5 1
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NB NS Z PS PB

-1 -0.66 -0.33 0 0.33 0.66 1 u(kT)

e(kT) , ec(kT)

 

Figure 2 Membership functions for the fuzzy controller. 

 The fuzzy controller implements a rule base made of a set of 
IF-THEN type of rules. These rules were determined 
heuristically based on the knowledge of the plant. An 
example of IF THEN rules is the following 

IF e is negative big (NB) and ce is negative big (NB) THEN u is 
Positive big (PB) 

This rule quantifies the situation where the STHE is far to 
minimum hot water temperature outlet  to maximum 
temperature hence  the cold water inflow rate changes from 
room temperature to 600C  so that it control the particular 
operating point of the STHE. The resulting rule table is 
shown in the Table 1. 

Table 1: Rule base for the fuzzy controller 

 

 

 

 

 

 

 
     Here min-max inference engine is selected, utilizes 
minimum for the AND operator and maximum for the OR 
operator. The end of each rule, introduced by THEN, is also 
done by minimum. The final conclusion for the active rules is 
obtained by the maximum of the considered fuzzy sets. To 
obtain the crisp output, the centre of gravity (COG) 
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defuzzification method is used. This crisp value is the 
resulting controller output. 

3.2. Adaptive Fuzzy Control 

In this section, design and development of a 
EFMRLC, which will adaptively tune on-line the centers of 
the output membership functions of the fuzzy controller 
determined earlier. 

 

                                                         
Figure 3. Enhanced Fuzzy Model Reference Learning 

Control 

 Figure 3 shows the EFMRLC as applied to the STHE 
process. The FMRLC uses a (learning mechanism that 
emphasizes 

a) Observes data from a fuzzy control system (i.e. r(kT) and 
y(kT))  

b) Characterizes its current performance, and  

c)Automatically synthesizes and/or adjusts the fuzzy 
controller using rule base modifier so that some  pre-
specified performance objectives are satisfied. 

   In general, the reference model, which characterizes 
the desired performance of the system, can take any form 
(linear or nonlinear equations, transfer functions, numerical 
values etc.). In the case of the level process reference model 
is shown in the figure.3. 

An additional fuzzy system is developed called 
“fuzzy inverse model” which adjusts the centers of the output 
membership functions of the fuzzy  controller, which still 
controls the process, This fuzzy system acts like a second 
controller, which updates the rule base of the fuzzy 
controller by acting upon the output variable (its 
membership functions centers). The output of the inverse 
fuzzy model is an adaptation factor p(kT) which is used by 
the rule base modifier to adjust the centers of the output 
membership functions of the fuzzy controller. The 
adaptation is stopped when p(kT) gets very small and the 

changes made to the rule base are no longer significant. The 
fuzzy controller used by the FMRLC structure is the same as 
the one developed in the previous section. 

The fuzzy inverse model has a similar structure to that of the 
controller (the same rule base, membership functions, 
inference engine, fuzzification and defuzzification interfaces. 
See section 3.1).  

The inputs of the fuzzy inverse model are 

 ye(kT) = ym(kT) – y(kT)                                    (6) 

yc(kT) = ( ye(kT) – ye(KT-T) ) / T                      (7) 

and the output variable is the adaptation factor p(kT).                        

The rule base modifier adjusts the centers of the output 
membership functions in two stages 

1. the active set of rules for the fuzzy controller at time 
(k-1)T is first determined 
 

                                   (8)  

   

The pair (i, j) will determine the activated rule. We denoted 
by i and j the  i-th, respectively the j-th membership function 
for the input fuzzy variables error and change in error. 

2. the centers of the output membership functions, 
which were found in the active set of rules 
determined earlier, are adjusted. The centers of 
these membership functions (bl) at time kT will 
have the following value 

b (kT ) =b (kT- T) +p(kT)                                         (9) 

  We denoted by l the consequence of the rule 
introduced by the pair (i, j).  

The centers of the output membership functions, which are 
not found in the active set of rules 

 (i, j), will not be updated. This ensures that only those rules 
that actually contributed to the current output y(kT) were 
modified. We can easily notice that only local changes are 
made to the controller’s rule base. 
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4. OPTIMIZATION GAIN (gu  ) 
 
Here scaling gain gu is identified using an optimization 

technique by considering Integral Square Error as an 
objective function. In proposed EFMRLC, for a small number 
of output membership functions a small value of the gain gu 
(0 < gu < 1) is sufficient for quick adaptation. In addition to 
that the small value of gu decreases risk of instability of the 
adaptation mechanism. 

For better learning control a larger number of output 
membership functions (a separate one for each input 
combination) would be required. This way a larger memory 
would be available to store information. Since the inverse 
model updates only the output centers of the rules which 
apply at that time instant and does not change the outcome 
of the other rules, a larger number of output membership 
functions would mean a better capacity to map different 
working the adjustments it made in the past for a wider 
range of specific conditions. This represents an advantage 
for this method since time consuming re-learning is avoided. 
At the same time this is one of the characteristics that 
differences learning control from the more conventional 
adaptive control. 

5. RESULTS AND DISCUSSION 

In this section, To examine the performance of proposed 
EFMRLC at 44-45oC, it is realized from the Figure. 4 and 
Table 2  that the EFMRLC enhances the performances as well 
as reduces the ISE value to minimum of 1.544 after 37 sec. 

Table 2. Performance indices in term of ISE and settling 
time(ts)  for servo response  

 
At the same time, the other two controller strategies 

reflect the poor performance (Figure. 4). The NNIMCand PID 
in STHE are capable of bringing the error to value of 3.16 & 
46.67 respectively.   

In the case of variations in different regions (45 - 49oC), the 
proposed EFMRLC behaves in the same trend of 
performance and brings minimum ISE error values as given 
in same Table 2. At the same time, other controllers give 
slow performance under all other conditions. The calculated 
ISE values as given in Table clearly indicate that the 

performance of NNIMC is moderate and PID is poor when 
compared to proposed EFMRLC. 

Table 3.Performance indices in term of ISE and settling 
time(ts) for servo regulatory response 

 
 
From the Figure. 5, in the adaptability test also EFMRLC 
gives satisfied performance and fetches minimum ISE error 
values. But the other controllers show their sluggishness in 
performance index as tabulated in Table 3 The results 
predict that a conventional PID and NNIMC exposes deficient 
performance as compared to EFMRLC.  

6. CONCLUSION 

This paper, a Enhanced Fuzzy Model Reference Learning 
Control (EFMRLC) is applied in to a non linear spherical tank 
system. Simulation runs are carried out by considering the 
EFMRLC algorithm, NNIMC and conventional PID-mode in a 
closed loop. The results clearly indicate that the 
incorporation of  
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Figure.4 Servo Response of STHE at 44-450C operation 
point 

FMRLC in the control loop in spherical tank system provides 
a superior tracking performance than the NNIMC and 
conventional PI mode. 
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Figure.5 Regulatory Response of STHE at 450C  Operating 
point 

 

 

PID NNIMC EFMRLC 

ISE ts ISE ts ISE ts 

44-450C 46.6 380 3.16 85 1.544 37 

45-460C 28.4 240 3.23 78 1.487 51 

46-470C 19.2 144 3.85 76 1.485 41 

47-480C 14.0 159 3.59 79 1.459 10 

48-490C 10.7 115 3.91 82 1.041 08 
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