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Abstract - The research headed towards clustering 

data aims at considering numeric data, categorical 

data or a mixture of both. For such data, the 

concentration was finding a relationship between the 

data points to be clustered. The relationships were 

limited to being either binary or fuzzy. Both involved a 

numeric value called distance or any other similarity 

measure between two data points and cluster them 

together if found similar. With time, a new kind of 

relationship called categorical relationship was 

observed between data points, far different from the 

traditionally seen ones. This paper focuses on handling 

data points having categorical relationships and the 

techniques emerged till date in this direction.  
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1. INTRODUCTION 
 
Clustering is an unsupervised machine learning approach 
aiming at categorizing similar data points among a set of 
data and grouping them together in a bundle, specifically 
called a cluster. It is of wide importance in areas of pattern 
analysis, statistical data analysis, image analysis, 
information retrieval, bioinformatics etc. Effective 
Clustering takes into account two aspects; the nature of 
the data points o be clustered and the relationships 
between these data points. The data can be numeric, 
categorical or mixed. The relationships between the data 
points are observed to be binary, fuzzy or the newly 
observed categorical.  All the previous research works 
were limited to picking a numeric value called distance or 
any other similarity measure between data points to 
cluster them accordingly. This similarity can be perfectly 
deduced if we find what relationship two data points are 
holding for each other. Whereas binary relationship 
categorized the data points as similar or dissimilar with 
respect to any similarity measure used and clustering 
them accordingly, fuzzy relationship pointed out a 
percentage of similarity or dissimilarity between data 
points with the less similar ones more probable to lie in 

the same cluster. Both the binary and the fuzzy 
relationships involved computation on the actual 
representations of the objects.  
 
With advancements in technology, focus shifted towards 
data points having categorical relationships or associated 
labels between them. For example, the people associated 
on social networking sites, are clustered on the basis of 
their relationships with each other, some being 
acquaintances, friends, close friends, family. Each 
relationship is provided with some privileges, priorities or 
permissions. Clustering such data cannot be efficiently 
done through the traditionally used similarity functions or 
through a numeric value. Spectral Clustering [1], 
Correlation Clustering [2] and Chromatic Correlation 
Clustering [3] are some newly proposed research works 
for handling data with categorical relationships. This 
paper surveys the research works and their extensions 
with the sole purpose of clustering such data objects.  
 

2. CORRELATION CLUSTERING 
 
The traditional clustering algorithms relied on a real-
valued proximity function, f(.,.) to calculate distance or 
similarity between data points. This function f was either 
provided as input to the algorithm or computed through 
object representation. It also could be derived from some 
past training. However, it failed to recognize how two data 
points interact or communicate with each other and was 
applied multiple times in the algorithm to handle 
agreements. This led to recognizing pair-wise 
relationships among objects which was best identified by 
edge labeled graphs. 
  

2.1 Correlation Clustering by Bansal et al (2004) 
 
Bansal et al in 2004 [2] introduced Correlation Clustering 
for recognizing pair-wise relationships between data 
points through edge labeled graphs and cluster them 
accordingly. Unlike the conventional clustering algorithms, 
it introduced the notion of labeling graphs as positive or 
negative. The labeling was done to form clusters with 
maximized agreements and minimized disagreements. 
Agreement implies that the cluster should have maximum 
number of positive edges within clusters and negative 
edges between clusters. Disagreement, on the other hand, 
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means just the opposite of agreement, i.e. more negative 
edges within clusters. The similarity function in the 
problem could be taken by some past data and the 
resultant clustering should be related to the similarity 
function as much as possible. The authors also point out a 
limitation of the conventional clustering algorithms of 
needing to know the number of clusters a prior. This 
limitation is overlooked in their paper because the 
resultant clustering can any number of clusters based on 
the edge labels. For the objective of maximizing 
disagreements and minimizing agreements, the authors 
proposed a constant factor approximation and PTAS 
respectively.  
 

2.2. Correlation Clustering with Noisy Partial 
Information 
 
Correlation Clustering by Bansal et al [2] was encountered 
having issues in its average-case models, to which authors 
in [4] proposed a semi-random model of Correlation 
Clustering. The average case models were found 
realistically impossible. Also, each pair of vertices had the 
same amount of similarity or dissimilarity which made 
clustering difficult. Two approximation algorithms were 
also proposed by authors in [4] in their semi-random 
model. The first algorithm had a Polynomial-Time 
Approximation Scheme (PTAS) for the instances and the 
second algorithm was a recovery algorithm for the planted 
partition giving a small classification error η. 
 

2.3 Correlation Clustering In Data Streams 
 
Authors in [5] extended the concept of correlation 
Clustering to be used in a data stream which not only 
consists of a sequence of edges with their weights but also 
updates like insertions and deletions of edges. Instead of 
putting maximum number of positively labeled edges in a 
cluster and negatively labeled edges between the clusters, 
it aimed to form separate clusters of positive edges and 
negative edges. A space approximation algorithm was also 
proposed yielding a polynomial time of . 
The other contributions of their proposed work included 
developing linear sketch based data structures to measure 
the quality of a given node partition followed by 
combining these data structures to convex programming 
and sampling techniques for the approximation problem 
to be solved. Authors further extended their work to 
designing efficient algorithms for convex programming 
and to reduce the adaptivity of the sampling. 
  

3. APPLICATIONS OF CORRELATION CLUSTERING 
 
Applicability of Correlation Clustering in various applications 

has been found promising. Few of the related research works 

have been discussed below. 

3. 1 Phase Transition 
 
Neda at al [6] observed the Phase Transition in a complete 
signed graph to be occurring with function r(q)  at q=1/2; 
q being the relative size of the maximal cluster. Seeing the 
complexity associated with clustering random graphs, 
Monte Carlo simulations were done instead of a 
mathematically strict analysis. Testing was done both on 
Erdos-Renyi graphs [7, 8] in [6] and Barabasi-Albert type 
[9] scale free graphs in [10]. Aszalos [11], inspired by the 
work of Neda et al, then replaced the simulation tools of 
Neda et al in [10]. His other contributions included a new 
proposed storage method for graphs and increment in the 
number of nodes from 100-500. His method made it able 
for a desktop computer to generate needing thousands of 
clustering using this method. All the three mentioned 
algorithms worked knowing only some of the parameters 
of a random graph and no prior knowledge about its 
structure. For experimentation purpose, Azsalos [11] used 
Contraction, a simple greedy algorithm, involving 
partitioning of singletons, followed by selecting pairs of 
clusters and then joining them till no pairs can be further 
joined. The partitioning done is further restricted to 
following a rule, that is, a function  should be 

maximal;    denoting the cost value of partition for a 

signed graph adhering to the minimizing disagreement 
criterion. Several conjectures depicting the behavior of the 
deduced curves were formulated.  
 

3.2 Two-edge connected Augmentation for Planar 
Graphs  
 
For a given graph S containing weights of edges and a 
subset of the edges R, if the weight of R is minimum and 
each edge of R has a two-edge connected endpoint in 
R S, then the given graph is said to have two-edge 
connected augmentation. The Correlation clustering 
problem was found to be a NP-hard [12] and the only 
possible improvement in this direction was a constant-
factor approximation scheme by [13]. Authors in [14] 
propose to reduce correlation clustering to two-edge-
connected augmentation for planar graphs and addressed 
the problem of Correlation Clustering being NP-Hard by 
giving a polynomial-time approximation scheme. 
 

3.3  Hyperspectral Imagery 
 
Correlation Clustering can also be used in Hyperspectral 
imagery because of its ability to perform different feature 
selection on different clusters along with clustering data 
objects.  ORCLUS, a correlation clustering algorithm was 
tested for the same by authors in [15].  They basically 
enhanced the Correlation Clustering problem in the 
following ways. Traditionally, Principle Component 
Analysis (PCA) was used for optimization of ORCLUS for 
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feature selection but the authors used Segmented 
Principle Component Analysis (SPCA) instead.  Another 
modification proposed in the paper was that the eigen 
vectors corresponding to smallest eigen values as used by 
PCA conventionally was changed to maximum values. 
After the required enhancements, the resultant ORCLUS 
algorithm was tested on three hyperspectral images. 
 

3.4 Image Partitioning Using Multicuts 
 
Authors in [16] addressed the shortcoming of Maximum- 
A-Priori (MAP) point of having less scope of probabilistic 
inference and took correlation clustering as a multicut 
problem. One possible way of overcoming the addressed 
problem was by estimating ‘error bars’ to access 
sensitivities and uncertainties for future data analysis. 
Presenting a probabilistic approach to Correlation 
Clustering using Perturbed MAP, estimates for image 
processing, open contour parts due to imperfect local 
detection can be closed thereby reducing the local 
artefacts by topological priors. A significantly reduced 
computation time to seconds from minutes was observed 
using their proposed method.  

 
4. CHROMATIC CORRELATION CLUSTERING  
 
Bonchi et al [3] further extended the concept of 
Correlation Clustering to Chromatic Correlation Clustering 
having categorical pair wise relation between data objects. 
Instead of clustering the data points according to 
maximizing agreements and minimizing disagreements 
criteria, Chromatic Correlation Clustering requires that the 
cluster formations should involve the vertices having 
different colored edges and a objective function to cluster 
the edges with the same color. The contributions include 

 The Chromatic Clustering problem, like 
Correlation Clustering, image partitioning and 
other traditional clustering is NP-hard; therefore, 
random algorithm was designed which 
guaranteed approximation till the maximum 
degree of the input graph. The steps of the 
proposed algorithm were as follows 

o Taking a random edge of a graph as a 
pivot  

o Start building a cluster around it  
o Remove that cluster from the graph. 
o Repeating the same steps iteratively till 

all the edges are clustered 
 Following were the advantages of the proposed 

algorithm. 
o Faster execution 
o Easy implementation 
o Parameter free clustering 

 The only drawback encountered was that a large 
number of clusters can be formed, a solution to 

which was a proposed variant algorithm aiming at 
checking the choosing mechanism of the pivot and 
the building of cluster around it.  

 The clustering problem can also limit the number 
of clusters as required by further optimizing the 
objective function according to the alternating-
minimization paradigm.  

 For the pairwise relations described through 
labels, authors proposed a yet another extension 
to the proposed randomized approximation 
algorithm by introducing some modifications to it. 
The modifications, in no way, disturbed its 
guarantee of  approximation till the maximum 
degree of the graph 

 Testing of the proposal on both synthetic and real 
life datasets in terms of the constructed ground-
truth clustering and objective function showed 
outperformed results. 

 
Authors in [17] generalized the correlation clustering 
problem. Like Correlation Clustering, the pairwise 
relations were categorical instead of the conventional 
binary relations. Linear approximation was achieved 
almost in all cases for Correlation Clustering. The authors 
improved the current knowledge state and theoretical 
understanding of the clustering problem through its 
designed constant approximation problem. Another 
contribution of their research work included the 
improvement of the approximation ratio of 4 through a 
deterministic linear programming-based algorithm. The 
proposed clustering algorithm was fast for the ground-
truth clustering that is mostly hidden by the noisy 
observations and testing on synthetic and real life datasets 
with outperformed results for practical analysis.  
 

5. SPECTRAL CLUSTERING 
Correlation Clustering and Chromatic Correlation Clustering 

were limited to work using simple graphs. But, the pair wise 

relationships can turn complex too. The edges joining the 

vertices representing the data objects can also possess some 

relation between them. Simple graphs fall weak at 

determining such relations. Based on the graphs being 

directed or undirected, the relationships are further 

categorized into asymmetric and symmetric. Pair-wise 

relationships cannot handle the complexities associated with 

such relations. Even if they are squeezed somehow to being 

pair-wise, loss of information can possibly occur. These 

problems led to the notion of clustering data through 

hypergraphs which can connect more than two vertices. 

Partitioning hypergraphs for clustering is termed as Spectral 

Clustering. This concept was introduced by authors in [1]. 

They presented a framework for the same. Vertices in a 

weighted graph can be labeled or unlabelled or a mix of both. 

In the mixed case, where some vertices are labeled and the 

others are not, the labels can be assigned seeing either the 
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similarity between vertices to the same class or the most 

common label in the classified neighbors of that vertex. For 

the unlabelled weighted graph, the same framework is used by 

generalizing partitioning methodology for undirected graphs 

as in [18]. Concept of a natural random walk over 

hypergraphs is also introduced according to which the cut 

criterion and the regularization framework were interpreted. 

The cut criterion used is the Normalized- Cut approach of 

[18]. Analogous to the normalized cut criterion for simple 

graphs, a real-valued relaxed criterion for the hypergraphs was 

suggested called the Hypergraph Laplacian. This work was 

limited to classification and clustering using hypergraphs. The 

authors further extended their work in [19] for hypergraph 

embedding and transductive inference. The results of 

clustering using hypergraphs when compared with those of 

clustering using simple graphs were found significantly better. 

 

The relations are also not limited to being pairwise or dyadic 

and can be triadic, tetradic or higher affinity relations. 

Clustering data objects having such relations was the 

objective of the research by authors in [20]. A two step 

algorithm was proposed for the same. The algorithm, with the 

use of any similarity measure, can be used effectively even for 

other types of clustering. The steps of the algorithm can be 

summarized as follows: 

 First step uses a weighted graph to approximate the 

resulting hypergraph via a novel scheme. 

 Second step involves portioning of the vertices of the 

graph through a spectral partitioning algorithm.  

The proposed algorithm can be efficiently run on any order 

hyperedges including order two thereby simultaneously 

incorporating information related to each order. Performance 

analysis of the proposed algorithm proves its superiority when 

compared to any existing partitioning algorithm.  

 

6. CONCLUSION 
 
The objective of this paper is to shift the focus of the 
clustering of data points from the traditional binary and 
fuzzy relationships to newly identified categorical 
relationships. For this, the similarity measures have been 
replaced with edge labeled graphs as in Correlation 
Clustering. Correlation Clustering deduced a new 
methodology of labeling the data points as positive or 
negative edges in an edge labeled graph with the notion of 
maximizing agreements and minimizing disagreements. 
The extended Correlation Clustering, called the Chromatic 
Correlation Clustering further introduced colors in the 
labeled edges with a cluster containing similarly colored 
edges and separating the differently colored ones. Spectral 
Clustering emphasized on the limitation of detecting pair-
wise relationships between data objects through 
undirected or directed graphs and proposed hypergraphs 
in this context. These research works are discussed in 
detail along with their usability in different applications.  
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