
          International Research Journal of Engineering and Technology (IRJET)               e-ISSN: 2395-0056 

               Volume: 02 Issue: 09 | Dec-2015           www.irjet.net                                                      p-ISSN: 2395-0072 

 

© 2015, IRJET                                                          ISO 9001:2008 Certified Journal                                                       Page 2485 
 

A Survey of Cloud Detection Techniques For  

Satellite Images 

Geethu Chandran A J1, Christy Jojy2 

1 Student, Department Of Computer Science and Engineering, Lourdes Matha College Of Science and Technology, 
Kerala, India 

2 Assistant professor, Department Of Computer Science and Engineering, Lourdes Matha College Of Science and 
Technology, Kerala, India 

 

---------------------------------------------------------------------***---------------------------------------------------------------------

Abstract - The detection of clouds in satellite imagery 
has a number of important applications in weather and 
climate studies. Satellite images plays a major role for 
monitoring earth changes in land covers such as forest, 
cities, agriculture, coastal area etc. but presence of 
clouds is a challenging issue in most of the satellite 
imaging based applications. Accurate detection and 
removal of cloud region is very important for satellite 
images. In this paper a review of several cloud detection 
technique is presented. The major challenge of cloud 
detection approaches is  high misclassification rate of 
cloud pixels due to lower contrast of cloud edges 
against the land or sea background. A posteriori 
probability–Markov random field (MAP-MRF) approach 
shows improved classification rate of cloud pixels than 
other cloud detection techniques, which solve high 
misclassification rate of cloud pixels. To improve the 
classification rate, two different functional forms are 
used. The first one is an effective and efficient 
implementation of the probability hypothesis density 
(PHD) filter, which is based on Gaussian mixtures 
(GMs). The second one is a region matching procedure 
based on a maximum cross-correlation (MCC). 

 

Key Words: Cloud detection, image classification, 
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I. INTRODUCTION 

The past two to three decades has seen a turnaround in 
our capacity to survey and map our global environment 
through use of satellite remote sensing technology.  
Remote sensing is closely related with satellite imaging. 
Images can be acquired by using different satellites such 
as ikonos, landsat, Quickbird and each satellite is used for 
different purposes like defense (change detection in 
regions), agriculture (for analysis of agriculture) etc . 
Every object in a satellite image is essential for accurate 
processing, so image quality is one of the most important 
factors in satellite images. But presence of clouds in 
satellite images will affect the  Quality of image. It is 
difficult to avoid clouds in satellite images during image 

acquisition and it also causes many problems in the study 
of satellite image based applications. Removing cloud as a 
noise from an image will be helpful for better analysis of 
satellite imaging applications. Remote sensing has been 
commonly used in a wide variety of urban and 
environmental applications, such as monitoring land-use 
change, measuring water quality, and mapping vegetation 
[1]. Detection of clouds in satellite images is a very 
interesting remote sensing application such as 
Meteorological forecasting, Urban area control, Oil spills 
monitoring ,Traffic analysis, Environmental analysis. 
Cloudy and cloud-free pixels must be distinguished before 
automatic estimation of surface variables .  

Traditionally both spatial and spectral techniques have 
been employed to identify cloud contaminated pixels in 
polar orbiting and geostationary satellite data. The key to 
the success of most of these algorithms lies in the selection 
of the thresholds for various spectral tests.  In more robust 
algorithms,  spatially and temporally varying thresholds, 
which better capture local atmospheric and surface 
effects, are used to improve their performance and 
broaden their application over algorithms with fixed 
thresholds for cloud tests. Extracting cloud field 
information from these images using visual/manual 
interpretation is a tedious and unreliable task and 
moreover the results are, to some extent, operator 
dependent. Therefore, highly efficient and robust cloud 
classification schemes are needed for automatic 
processing of satellite cloud imagery for climatological 
applications.  

In recent years, considerable research has been focused 
on the cloud classification area. A good review of the 
available schemes is provided by Pankiewicz [2]. 
Generally, two broad categories of cloud features are most 
commonly used in the cloud classification field: spectral 
and textural features. The first class of features, which 
plays a more important role for cloud classification, 
extracts the information on the cloud radiance in different 
spectral bands. Some of the most commonly used methods 
in this category include threshold based schemes [3], 
histogram [4] schemes, and multispectral approaches [5], 
[6]. The spectral features due to their physical importance 
(albedo, temperature) are proven to be effective and 
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simple. However, they also encounter some problems 
because of the spectral similarities of certain features such 
as ice cloud and snow. Other factors, such as moisture in 
atmosphere, may also alter the multispectral 
characteristics and thus affecting the final judgement. The 
second category, i.e., textural features, distinguish certain 
types of clouds by the spatial distribution characteristics 
of gray levels corresponding to a region in one specific 
channel. While the spectral characteristics of clouds may 
change, their textural properties are often distinct and 
tend to be less sensitive to the effects of atmospheric 
attenuation or detector noise [7]. Most of the texture-
based cloud classification methods in the past used 
statistical measures based on gray level cooccurrence 
matrix (GLCM) [8]  and its variant, such as gray level 
difference vector (GLDV), gray level difference matrix 
(GLDM) and sum and difference histogram (SADH) [9], 
[10]. For example, Welch et al. [9] used GLCM for feature 
extraction to classify stratocumulus, cumulus, and cirrus 
clouds. Kuo et al. [10] used GLDV method to differentiate 
between clouds and ice/snow. Another important group of 
textural extraction schemes explores the frequency 
characteristics of images. Garand et al. [11] have examined 
the power spectrum of ocean cloud images while Gu and 
Duncan [12] evaluated autocorrelation, textural edgeness 
and the GLCM approach to obtain cloud textural 
information. Gabor filter  was also employed for cloud 
classification task by Lamei et al. [7] and Du [13]. Several 
comparative studies of these features have been 
conducted by Parikh [14], Gu [12], and Ohanian [15] 
where they suggested that GLCM provides the best 
features for cloud classification, while in [16] Gabor filters 
and Fourier features are recommended. There is no 
consistent and optimal feature extraction scheme 
determined at this time. Therefore, there is a need to 
develop efficient feature extraction schemes for cloud data 
analysis.  

Another important issue in the cloud data analysis is the 
choice of an appropriate classifier. There are basically two 
types of classifiers; traditional classifiers which include: 
linear discriminant, maximum likelihood and k-nearest 
neighbour classifiers, and the neural-network classifiers 
which include: multilayer backpropagation neural 
network (BPNN), self organizing map (SOM) and 
probability neural network (PNN), etc. Owing to the fact 
that the characteristics of clouds are highly variable and 
difficult to classify, neural network classifiers through 
their adaptive learning nature offer attractive and 
computationally very efficient alternatives. Lee et al. [17] 
used a three-layer BPNN for cloud classification of 
LANDSAT multispectral scanning system (MSS) data while 
PNN was examined by Bankert et al. [18] for classification 
of AVHRR imagery. In [19], traditional linear 
discrimination and two neural-network classifiers namely 
BPNN and PNN were comparatively studied for the 
classification of polar clouds and surface. The results 
showed that BPNN-based solution achieved the highest 

classification accuracy, while PNN falls behind within a 
very small accuracy range. It is worthy to mention that the 
BPNN-based scheme was extremely time consuming in the 
training phase compared to the one-pass noniterative PNN 
training approach [18]. The unsupervised Kohonen SOM 
has also been examined for cloud classification [20]–[21].  
 
 

II. CLOUD DETECTION TECHNIQUES 
 
a. Semisupervised  Cloud Classification 

 
Remote sensing image classification constitutes a 

challenging problem since very few labeled pixels are 
typically available from the analyzed scene. In such 
situations, labeled data extracted from other images 
modeling similar problems might be used to improve the 
classification accuracy. However, when training and test 
samples follow even slightly different distributions, 
classification is very difficult. This problem is known as 
sample selection bias. In this method, use a method to 
combine labeled and unlabeled pixels to increase 
classification reliability and accuracy. A semisupervised 
support vector machine classifier based on the 
combination of clustering and the mean map kernel is 
used. The method reinforces samples in the same cluster 
belonging to the same class by combining sample and 
cluster similarities implicitly in the kernel space. A soft 
version of the method is also proposed where only the 
most reliable training samples, in terms of likelihood of 
the image data distribution, are used. Capabilities of this 
method are illustrated in a cloud screening application 
using data from the Medium Resolution Imaging 
Spectrometer (MERIS) instrument onboard the European 
Space Agency ENVISAT satellite. Kernel methods and 
specifically support vector machines (SVMs) are a good 
choice for supervised classification. SVMs are accurate 
nonlinear robust classifiers [22]–[23], which have been 
successfully used in Remote Sensing data classification 
[24] [25]. Using labeled data from other images could give 
rise to the sample selection bias problem if the data 
marginal distribution is not properly modeled, thus 
affecting the performance of supervised methods. In this 
situation, unlabeled samples extracted from the test image 
can be synergistically used with the available labeled 
training samples to increase the reliability and accuracy of 
the classifier, and to alleviate the problem [26]. This is the 
field of semisupervised learning (SSL), in which the 
algorithm is provided with some available supervised 
information in addition to the unlabeled data. But this 
method is not so efficient because it takes long  
computational time, accuracy depend upon training 
sample and also need large training set. 
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b. Cloud Detection and Removal Algorithm for 
MODIS Remote Sensing Imagery 

 
 

Cloud is one of the most common interferers in 
Moderate Resolution Imaging Spectrum-radiometer 
(MODIS) remote sensing imagery. Because of cloud 
interference, much important and useful information 
covered by cloud cannot be recovered well. How to detect 
and remove cloud from MODIS imagery is an important 
issue for wide application of remote sensing data. In this 
method Firstly, several preprocessing works need to be 
done for MODIS L1B data, including geometric precision 
correction, bowtie effect elimination and stripe noise 
removal. Furthermore, through analyzing the cloud 
spectral characters derived from the thirty-six bands of 
MODIS data, it can be found spectral reflections of ground 
and cloud are different in various MODIS bands. Therefore, 
cloud and ground area can be respectively identified based 
on the analysis of multispectral characters derived from 
MODIS imagery. Most cloud regions including both thin 
and thick types can be detected by this method. Clouds 
removal processing mainly aims at cloud regions rather 
than whole image, which can improve processing 
efficiency. As for thin clouds and thick clouds removal, 
different removal algorithms are used in this method. 
Experimental results demonstrate that these proposed 
methods can effectively detect and remove cloud from 
MODIS image, which can meet the demands of post 
processing for remote sensing imagery applications. But 
this method lead higher misclassification rate of cloud 
pixels and it also a high time consuming process. 

 

c. Cloud Classification with Neural Networks 
 
The problem of cloud data classification from satellite 

imagery using neural networks is used here. Several image 
transformations such as singular value decomposition 
(SVD) and wavelet packet (WP) were used to extract the 
salient spectral and textural features attributed to satellite 
cloud data in both visible and infrared (IR) channels. In 
addition, the well-known gray-level cooccurrence matrix 
(GLCM) method and spectral features were examined for 
the sake of comparison. In this method, a neural-network-
based cloud classification  system is proposed. Several 
image transformation schemes namely singular value 
decomposition (SVD) and wavelet packets (WP’s) were 
exploited to extract salient features of the cloud data. In 
addition, the conventional GLCM-based statistical features 
were also used for the purpose of benchmarking. The 
features from both the visible and IR channels were then 
combined together and fed to a neural-network classifier. 
However, these features do not remain consistent and 
vary at different time of the day and season. 

d. Markov Random Field Approach for   
Classification  Of  Hyperspectral Imagery 

 
 

An adaptive Markov random field (MRF) approach is 
proposed for classification of hyperspectral imagery. 
Hyperspectral imagery can provide detailed spectral 
information of various ground cover types due to its wide 
coverage of wavelength and high sampling rate. 
Conventional pixelwise classification methods, such as 
maximum-likelihood classifier (MLC), k-nearest neighbor, 
and support vector machines (SVMs), mainly take 
advantage of spectral features while ignoring spatial 
relationship with neighboring pixels [27]. In recent years, 
spatial context information has been used together with 
spectral information for improved classification [28], 
ranging from probabilistic label relaxation to texture 
feature generation [29], [30]. This is a widely used method 
for integrating spatial information and spectral 
information is Markov random field (MRF). It modifies the 
usual form of a spectral discriminant function through the 
addition of a spatial contribution term that recognizes 
contextual relationship of pixels. MRF has often classified 
remote sensing imagery based on the maximum-likelihood 
estimation for the spectral contribution part and the Gibbs 
distribution/Ising model for the spatial contextual 
information. In this method presents an adaptive-MRF (a-
MRF) approach for spectral–spatial classification of  
hyperspectral imagery. Here introduce a relative 
homogeneity index (RHI) and use this index to find the 
suitable weighting coefficient of the spatial contribution 
for each pixel βm, in order to improve classification 
performance. But this method Consider only spatial 
dependence relations, thus neglecting the temporal 
information and also Time consuming and Computation 
complexity. This algorithm needs preprocessing so cloud 
edge detection accuracy is low.  
 

e. Cloud-Screening Algorithm for ENVISAT/MERIS 
Multispectral Images 

This method presents a methodology for cloud 
screening of multispectral images acquired with the 
Medium Resolution Imaging Spectrometer (MERIS) 
instrument on-board the Environmental Satellite 
(ENVISAT). The method yields both a discrete cloud mask 
and a cloud-abundance product from MERIS level-1b data 
on a per-pixel basis. The cloud-screening method relies on 
the extraction of meaningful physical features (e.g., 
brightness and whiteness), which are combined with 
atmospheric-absorption features at specific MERIS-band 
locations (oxygen and water vapor absorptions) to 
increase the cloud-detection accuracy. All these features 
are inputs to an unsupervised classification algorithm; the 
cloud-probability output is then combined with a spectral 
unmixing procedure to provide a cloud-abundance 
product instead of binary flags.  Cloud-screening 
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approaches, also referred to as cloud masking or 
detection, are generally based on the assumption that 
clouds present some useful features for its identification 
[31]: Clouds are usually brighter and colder than the 
underlying surface; clouds increase the spatial variability 
of detected radiance; and the spectral response is different 
from that of the surface covers. But, individually, each of 
these features in a given image is strongly conditioned by 
the sun elevation, variable path length, atmospheric water 
vapor, aerosol concentrations, variable reflectance, and 
subpixel clouds produced on the same pixel by cloud 
structures over land or sea [32]. Some of these problems 
can be mitigated in the cloud-screening algorithm by 
including specific corrections (e.g., sun elevation or path 
length), avoiding bands with severe atmospheric effects, 
and providing to the user information about subpixel 
coverage. This method takes advantage of the high 
spectral and radiometric resolutions of MERIS and the 
specific location of some channels (e.g., oxygen and water-
vapor absorption bands) to increase the cloud-detection 
accuracy. The method is capable of the following: 1) 
detecting clouds accurately and 2) providing probability 
or cloud abundance rather than merely cloud flags. The 
cloud-abundance product provided is not directly related 
to the retrieval of cloud optical properties [33], such as the 
cloud optical thickness, which usually relies on radiative-
transfer models. This added-value product allows the user 
to apply an adjustable cloud mask depending on the 
further processing stages and application of the MERIS 
image. 

 

f. Cloud Detection Algorithms Based on a MAP-
MRF Approach in Space and Time 

 

A recurrent concern in cloud detection approaches is 
the high misclassification rate for pixels close to cloud 
edges.  Solving this problem by introducing a novel 
penalty term within the classical maximum a posteriori 
probability–Markov random field (MAP-MRF) approach. 
To improve the classification rate, such term, for which  
suggest two different functional forms, accounts for the 
predictable motion of cloud volumes across images. Two 
mass tracking techniques are proposed. The first one is an 
effective and efficient implementation of the probability 
hypothesis density (PHD) filter, which is based on 
Gaussian mixtures (GMs) and relies on finite set statistics 
(FISST). The second one is  region matching procedure 
based on a maximum cross-correlation (MCC) that is 
characterized by low computational load. Classical MRF 
methods account only for spatial dependence relations, 
thus neglecting the temporal information often   available 
in image sequences. In this method, apply a 
spatiotemporal MRF methods to the cloud masking 
problem that is complicated by the nonrigid nature of the 

masses. This approach turns out to be especially valuable 
in mitigating the problem of misclassification rate at the 
cloud edges, which typically stems from low contrast 
against sea and land background [34] by exploiting the 
cloud motion as an additional discriminant feature against 
the static background. Cloud detection by using MAP-MRF 
approach is more efficient and good method than other 
cloud classification algorithm.  

 

 Table -1: Advantages and Disadvantages of existing  

cloud detection techniques. 

 

Algorithm Advantages Disadvantages 

Semisupervised Simple Need large 

training set. 

MODIS imagery Effective  High 

misclassificatio

n rate. 

 

High tme 

consuming. 

Neural network Complexity 

less. 

Not consistent. 

MRF approach Simple and 

popular. 

Accuracy low. 

Need 

preprocessing. 

ENVISAT/MERIS Improved 

classification. 

Time 

consuming. 

 

The cloud detection by using MAP-MRF  approach turns 
out to be especially valuable in mitigating the problem of 
misclassification rate at the cloud edges, which typically 
stems from low contrast against sea and land background 
by exploiting the cloud motion as an additional 
discriminant feature against the static background. Cloud 
detection by using MAP-MRF approach is more efficient 
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and good method than other cloud classification 
algorithm.  

III. Conclusion 

Automatic and accurate classification of clouds to 
enhance weather forecasting is one of the important 
applications studied in meteorology. Many different 
approaches have been used to automatically detect clouds 
in satellite imagery. Most approaches are deterministic 
and provide a binary cloud – no cloud product used in a 
variety of applications. Some of these applications require 
the identification of cloudy pixels for cloud parameter 
retrieval, while others require only an ability to mask out 
clouds for the retrieval of surface or atmospheric 
parameters in the absence of clouds. A few approaches 
estimate a probability of the presence of a cloud at each 
point in an image. But these approaches lead to high 
misclassification of cloud edges. The use of  MAP-MRF 
approach for cloud detection gives improved classification 
of cloud edges than other method. Here apply a 
spatiotemporal MRF methods to the cloud masking 
problem that is complicated by the nonrigid nature of the 
masses. To improve the classification rate,  two different 
functional forms, accounts for the predictable motion of 
cloud volumes across images. Two mass tracking 
techniques are proposed. The first one is an effective and 
efficient implementation of the probability hypothesis 
density (PHD) filter, which is based on Gaussian mixtures 
(GMs) and relies on finite set statistics (FISST). The second 
one is a region matching procedure based on a maximum 
cross-correlation (MCC) that is characterized by low 
computational load. A penalty term is computed for 
previous image to improve classification of current image. 
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